diff options
Diffstat (limited to 'candle-core/src')
-rw-r--r-- | candle-core/src/backprop.rs | 62 | ||||
-rw-r--r-- | candle-core/src/conv.rs | 12 | ||||
-rw-r--r-- | candle-core/src/cpu_backend.rs | 87 | ||||
-rw-r--r-- | candle-core/src/cuda_backend.rs | 66 | ||||
-rw-r--r-- | candle-core/src/display.rs | 2 | ||||
-rw-r--r-- | candle-core/src/quantized/avx.rs | 126 | ||||
-rw-r--r-- | candle-core/src/quantized/k_quants.rs | 3 |
7 files changed, 305 insertions, 53 deletions
diff --git a/candle-core/src/backprop.rs b/candle-core/src/backprop.rs index 22c28ac4..9ecdee4f 100644 --- a/candle-core/src/backprop.rs +++ b/candle-core/src/backprop.rs @@ -192,12 +192,68 @@ impl Tensor { *f_sum_grad = f_sum_grad.add(&f_grad)?; } Op::Conv1D { .. } => Err(Error::BackwardNotSupported { op: "conv1d" })?, - Op::Conv2D { .. } => Err(Error::BackwardNotSupported { op: "conv2d" })?, + Op::Conv2D { + arg, + kernel, + padding, + stride, + } => { + // The output height for conv_transpose2d is: + // (i_h - 1) * stride - 2 * padding + dilation * (k_h - 1) + out_padding + 1 + let grad_h = grad.dim(2)?; + let k_h = kernel.dim(2)?; + let out_size = (grad_h - 1) * stride + (k_h - 1) + 1 - 2 * padding; + let out_padding = arg.dim(2)? - out_size; + let grad_arg = + grad.conv_transpose2d(kernel, *padding, out_padding, *stride)?; + let sum_grad = grads.or_insert(arg)?; + *sum_grad = sum_grad.add(&grad_arg)?; + + let grad_kernel = arg + .transpose(0, 1)? + .conv2d(&grad.transpose(0, 1)?, *padding, *stride, 1)? + .transpose(0, 1)?; + let sum_grad = grads.or_insert(kernel)?; + *sum_grad = sum_grad.add(&grad_kernel)?; + } Op::ConvTranspose2D { .. } => Err(Error::BackwardNotSupported { op: "conv-transpose2d", })?, - Op::AvgPool2D { .. } => Err(Error::BackwardNotSupported { op: "avg-pool2d" })?, - Op::MaxPool2D { .. } => Err(Error::BackwardNotSupported { op: "max-pool2d" })?, + Op::AvgPool2D { + arg, + kernel_size, + stride, + } => { + if kernel_size != stride { + crate::bail!("backward not supported for avgpool2d if ksize {kernel_size:?} != stride {stride:?}") + } + let (_n, _c, h, w) = arg.dims4()?; + let grad_arg = grad.upsample_nearest2d(h, w)?; + let grad_arg = + (grad_arg * (1f64 / (kernel_size.0 * kernel_size.1) as f64))?; + let sum_grad = grads.or_insert(arg)?; + *sum_grad = sum_grad.add(&grad_arg)?; + } + Op::MaxPool2D { + arg, + kernel_size, + stride, + } => { + if kernel_size != stride { + crate::bail!("backward not supported for maxpool2d if ksize {kernel_size:?} != stride {stride:?}") + } + let (_n, _c, h, w) = arg.dims4()?; + // For computing the max-pool gradient, we compute a mask where a 1 means + // that the element is the maximum, then we apply this mask to the + // upsampled gradient (taking into account that multiple max may exist so + // we scale the gradient for this case). + let node_upsampled = node.upsample_nearest2d(h, w)?; + let mask = arg.eq(&node_upsampled)?.to_dtype(arg.dtype())?; + let avg = mask.avg_pool2d(*kernel_size, *stride)?; + let grad_arg = ((grad * avg)?.upsample_nearest2d(h, w)? * mask)?; + let sum_grad = grads.or_insert(arg)?; + *sum_grad = sum_grad.add(&grad_arg)?; + } Op::UpsampleNearest2D { .. } => Err(Error::BackwardNotSupported { op: "upsample-nearest2d", })?, diff --git a/candle-core/src/conv.rs b/candle-core/src/conv.rs index 3455247b..d9e0a9ab 100644 --- a/candle-core/src/conv.rs +++ b/candle-core/src/conv.rs @@ -71,18 +71,14 @@ pub struct ParamsConvTranspose2D { impl ParamsConvTranspose2D { pub(crate) fn out_h(&self) -> usize { let dilation = 1; - (self.i_h - 1) * self.stride - 2 * self.padding - + dilation * (self.k_h - 1) - + self.output_padding - + 1 + (self.i_h - 1) * self.stride + dilation * (self.k_h - 1) + self.output_padding + 1 + - 2 * self.padding } pub(crate) fn out_w(&self) -> usize { let dilation = 1; - (self.i_w - 1) * self.stride - 2 * self.padding - + dilation * (self.k_w - 1) - + self.output_padding - + 1 + (self.i_w - 1) * self.stride + dilation * (self.k_w - 1) + self.output_padding + 1 + - 2 * self.padding } pub(crate) fn out_dims(&self) -> Vec<usize> { diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 0b19904b..f52d53b1 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -1193,41 +1193,78 @@ impl<'a> Map2 for ConvTranspose2D<'a> { let (out_h, out_w) = (p.out_h(), p.out_w()); // Output shape: [b_size, c_out, out_h, out_w]. - let mut dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w]; + let dst = vec![T::zero(); p.b_size * p.c_out * out_h * out_w]; let dst_s0 = p.c_out * out_h * out_w; let dst_s1 = out_h * out_w; let dst_s2 = out_w; let dst_s3 = 1; + + // TODO: Avoid making this copy if `inp` already has the appropriate layout. + let mut inp_cont = vec![T::zero(); p.b_size * p.c_in * p.i_h * p.i_w]; + let cont_s0 = p.i_h * p.i_w * p.c_in; + let cont_s1 = p.i_w * p.c_in; + let cont_s2 = p.c_in; for b_idx in 0..p.b_size { - for out_y in 0..out_h as i32 { - for out_x in 0..out_w as i32 { - let inp_x = out_x * p.stride as i32 - p.padding as i32; - let inp_y = out_y * p.stride as i32 - p.padding as i32; - for k_y in 0..p.k_h as i32 { - for k_x in 0..p.k_h as i32 { - let k_index = k_y as usize * k_s2 + k_x as usize * k_s3; - let inp_y = inp_y + k_y; - let inp_x = inp_x + k_x; - if inp_x < 0 || inp_y < 0 { - continue; - } - let inp_x = inp_x as usize; - let inp_y = inp_y as usize; - if inp_x < p.i_w && inp_y < p.i_h { - let inp_index = b_idx * inp_s0 + inp_y * inp_s2 + inp_x * inp_s3; - let dst_index = b_idx * dst_s0 + inp_y * dst_s2 + inp_x * dst_s3; - for c_out in 0..k_s0 { - for c_in in 0..k_s1 { - let k_index = k_index + c_out * k_s1 + c_in * k_s0; - let dst_index = dst_index + c_out * dst_s1; - let inp_index = inp_index + c_in * inp_s1; - dst[dst_index] += k[k_index] * inp[inp_index] + for h_idx in 0..p.i_h { + for w_idx in 0..p.i_w { + for c_idx in 0..p.c_in { + let src_idx = + b_idx * inp_s0 + c_idx * inp_s1 + h_idx * inp_s2 + w_idx * inp_s3; + let dst_idx = b_idx * cont_s0 + h_idx * cont_s1 + w_idx * cont_s2 + c_idx; + inp_cont[dst_idx] = inp[src_idx] + } + } + } + } + let num_threads = crate::utils::get_num_threads(); + + for k_y in 0..p.k_h { + for k_x in 0..p.k_w { + crate::cpu::kernels::par_range(0, p.c_out, num_threads, |dst_c_idx| { + let k_cont = (0..p.c_in) + .map(|c_in_idx| { + k[c_in_idx * k_s0 + dst_c_idx * k_s1 + k_y * k_s2 + k_x * k_s3] + }) + .collect::<Vec<_>>(); + for b_idx in 0..p.b_size { + for inp_y in 0..p.i_h { + for inp_x in 0..p.i_w { + let out_x = inp_x * p.stride + k_x; + let out_y = inp_y * p.stride + k_y; + if out_x < p.padding || out_y < p.padding { + continue; + } + let out_x = out_x - p.padding; + let out_y = out_y - p.padding; + if out_x < out_w && out_y < out_h { + let inp_cont = &inp_cont + [b_idx * cont_s0 + inp_y * cont_s1 + inp_x * cont_s2..]; + let dst_idx = b_idx * dst_s0 + + out_y * dst_s2 + + out_x * dst_s3 + + dst_c_idx * dst_s1; + let mut d = T::zero(); + unsafe { + T::vec_dot( + inp_cont.as_ptr(), + k_cont.as_ptr(), + &mut d, + p.c_in, + ) + } + let dst_p = dst.as_ptr(); + // Safety: dst_idx are uniques per dst_c_idx which is used to + // parallelise the different tasks so no two threads can try to + // write at the same location. + unsafe { + let ptr = dst_p.add(dst_idx) as *mut T; + *ptr += d } } } } } - } + }) } } Ok(dst) diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index 75eaf70a..ed696368 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -977,8 +977,8 @@ impl<'a> Map2 for Conv2D<'a> { k_l: &Layout, dev: &CudaDevice, ) -> Result<CudaSlice<T>> { - // Kernel shape: (c_out, c_in_k, w_k, h_k) - // Input shape: (b_size, c_in, w_in, c_in) + // Kernel shape: (c_out, c_in_k, h_k, w_k) + // Input shape: (b_size, c_in, h_in, w_in) let p = &self.0; let (out_w, out_h) = (p.out_w(), p.out_h()); let dst_el = p.c_out * out_w * out_h * p.b_size; @@ -1005,6 +1005,55 @@ impl<'a> Map2 for Conv2D<'a> { } } +struct ConvTranspose2D<'a>(&'a crate::conv::ParamsConvTranspose2D); +impl<'a> Map2 for ConvTranspose2D<'a> { + fn f<T: DeviceRepr + WithDType + ValidAsZeroBits>( + &self, + inp: &CudaSlice<T>, + inp_l: &Layout, + k: &CudaSlice<T>, + k_l: &Layout, + dev: &CudaDevice, + ) -> Result<CudaSlice<T>> { + // Kernel shape: (c_in_k, c_out, h_k, w_k) + // Input shape: (b_size, c_in, h_in, w_in) + let p = &self.0; + let (out_w, out_h) = (p.out_w(), p.out_h()); + let dst_el = p.c_out * out_w * out_h * p.b_size; + let inp = &inp.slice(inp_l.start_offset()..); + let k = &k.slice(k_l.start_offset()..); + let shape = inp_l.shape(); + let dims = shape.dims(); + let el = shape.elem_count(); + + // SAFETY: Set later by running the kernel. + let out = unsafe { dev.alloc::<T>(dst_el) }.w()?; + let cfg = LaunchConfig::for_num_elems(dst_el as u32); + let func = dev.get_or_load_func(&kernel_name::<T>("conv_transpose2d"), kernels::CONV)?; + let ds = if dims.len() == 4 { + [dims, inp_l.stride(), k_l.dims(), k_l.stride()].concat() + } else { + crate::bail!("unexpected input shape for conv_transpose2d {dims:?}") + }; + let ds = dev.htod_copy(ds).w()?; + let params = ( + el, + out_w, + out_h, + p.stride, + p.padding, + p.output_padding, + &ds, + inp, + k, + &out, + ); + // SAFETY: ffi. + unsafe { func.launch(cfg, params) }.w()?; + Ok(out) + } +} + enum PoolOp { Max, Avg, @@ -1649,12 +1698,15 @@ impl BackendStorage for CudaStorage { fn conv_transpose2d( &self, - _l: &Layout, - _kernel: &Self, - _kernel_l: &Layout, - _params: &crate::conv::ParamsConvTranspose2D, + l: &Layout, + kernel: &Self, + kernel_l: &Layout, + params: &crate::conv::ParamsConvTranspose2D, ) -> Result<Self> { - todo!() + let device = self.device().clone(); + let slice = + ConvTranspose2D(params).map(&self.slice, l, &kernel.slice, kernel_l, &device)?; + Ok(Self { slice, device }) } fn avg_pool2d(&self, l: &Layout, k: (usize, usize), stride: (usize, usize)) -> Result<Self> { diff --git a/candle-core/src/display.rs b/candle-core/src/display.rs index 8390a4a0..b497699b 100644 --- a/candle-core/src/display.rs +++ b/candle-core/src/display.rs @@ -43,7 +43,7 @@ impl Tensor { } } } - write!(f, "; {} ,{}]", self.dtype().as_str(), device_str) + write!(f, "; {}{}]", self.dtype().as_str(), device_str) } } diff --git a/candle-core/src/quantized/avx.rs b/candle-core/src/quantized/avx.rs index 96087feb..f906d090 100644 --- a/candle-core/src/quantized/avx.rs +++ b/candle-core/src/quantized/avx.rs @@ -1,5 +1,6 @@ -use super::k_quants::{BlockQ4_0, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K}; +use super::k_quants::{BlockQ4K, BlockQ4_0, BlockQ6K, BlockQ8K, BlockQ8_0, QK8_0, QK_K}; use crate::Result; +use byteorder::{ByteOrder, LittleEndian}; use half::f16; #[cfg(target_arch = "x86")] @@ -89,17 +90,35 @@ pub(crate) fn vec_dot_q8_0_q8_0(n: usize, xs: &[BlockQ8_0], ys: &[BlockQ8_0]) -> } } -const K_SHUFFLE: [u8; 128] = [ - 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, - 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, - 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, - 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, - 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, -]; - +#[inline(always)] unsafe fn get_scale_shuffle(i: usize) -> __m128i { + const K_SHUFFLE: [u8; 128] = [ + 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, + 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, + 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, + 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, + 13, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, + ]; _mm_loadu_si128((K_SHUFFLE.as_ptr() as *const __m128i).add(i)) } + +#[inline(always)] +unsafe fn get_scale_shuffle_k4(i: usize) -> __m256i { + const K_SHUFFLE: [u8; 256] = [ + 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, + 0, 1, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, + 2, 3, 2, 3, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, + 4, 5, 4, 5, 4, 5, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, 6, 7, + 6, 7, 6, 7, 6, 7, 6, 7, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, + 8, 9, 8, 9, 8, 9, 8, 9, 8, 9, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, + 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 10, 11, 12, 13, 12, 13, 12, 13, + 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, 13, 12, + 13, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, + 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, + ]; + _mm256_loadu_si256((K_SHUFFLE.as_ptr() as *const __m256i).add(i)) +} + #[inline(always)] pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Result<f32> { let qk = QK_K; @@ -187,3 +206,92 @@ pub(crate) fn vec_dot_q6k_q8k(n: usize, xs: &[BlockQ6K], ys: &[BlockQ8K]) -> Res Ok(hsum_float_8(acc)) } } + +#[inline(always)] +unsafe fn mm256_set_m128i(a: __m128i, b: __m128i) -> __m256i { + _mm256_insertf128_si256(_mm256_castsi128_si256(b), a, 1) +} + +#[inline(always)] +pub(crate) fn vec_dot_q4k_q8k(n: usize, xs: &[BlockQ4K], ys: &[BlockQ8K]) -> Result<f32> { + if n % QK_K != 0 { + crate::bail!("vec_dot_q4k_q8k: {n} is not divisible by {QK_K}") + } + let mut utmp = [0u32; 4]; + let kmask1: u32 = 0x3f3f3f3f; + let kmask2: u32 = 0x0f0f0f0f; + let kmask3: u32 = 0x03030303; + + unsafe { + let m4 = _mm256_set1_epi8(0xF); + + let mut acc = _mm256_setzero_ps(); + let mut acc_m = _mm_setzero_ps(); + + for (x, y) in xs.iter().zip(ys.iter()) { + let d = y.d * x.d.to_f32(); + let dmin = -y.d * x.dmin.to_f32(); + + LittleEndian::read_u32_into(&x.scales, &mut utmp[0..3]); + + utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4); + let uaux = utmp[1] & kmask1; + utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4); + utmp[2] = uaux; + utmp[0] &= kmask1; + + let mut q4 = x.qs.as_ptr(); + let mut q8 = y.qs.as_ptr(); + + let mins_and_scales = _mm256_cvtepu8_epi16(_mm_set_epi32( + utmp[3] as i32, + utmp[2] as i32, + utmp[1] as i32, + utmp[0] as i32, + )); + + let q8sums = _mm256_loadu_si256(y.bsums.as_ptr() as *const __m256i); + let q8s = _mm_hadd_epi16( + _mm256_extracti128_si256(q8sums, 0), + _mm256_extracti128_si256(q8sums, 1), + ); + let prod = _mm_madd_epi16(_mm256_extracti128_si256(mins_and_scales, 1), q8s); + acc_m = _mm_fmadd_ps(_mm_set1_ps(dmin), _mm_cvtepi32_ps(prod), acc_m); + + let sc128 = _mm256_extracti128_si256(mins_and_scales, 0); + let scales = mm256_set_m128i(sc128, sc128); + + let mut sumi = _mm256_setzero_si256(); + + for j in 0..QK_K / 64 { + let scale_l = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j)); + let scale_h = _mm256_shuffle_epi8(scales, get_scale_shuffle_k4(2 * j + 1)); + + let q4bits = _mm256_loadu_si256(q4 as *const __m256i); + q4 = q4.add(32); + let q4l = _mm256_and_si256(q4bits, m4); + let q4h = _mm256_and_si256(_mm256_srli_epi16(q4bits, 4), m4); + + let q8l = _mm256_loadu_si256(q8 as *const __m256i); + q8 = q8.add(32); + let p16l = _mm256_maddubs_epi16(q4l, q8l); + let p16l = _mm256_madd_epi16(scale_l, p16l); + sumi = _mm256_add_epi32(sumi, p16l); + + let q8h = _mm256_loadu_si256(q8 as *const __m256i); + q8 = q8.add(32); + let p16h = _mm256_maddubs_epi16(q4h, q8h); + let p16h = _mm256_madd_epi16(scale_h, p16h); + sumi = _mm256_add_epi32(sumi, p16h); + } + + let vd = _mm256_set1_ps(d); + acc = _mm256_fmadd_ps(vd, _mm256_cvtepi32_ps(sumi), acc); + } + + let acc_m = _mm_add_ps(acc_m, _mm_movehl_ps(acc_m, acc_m)); + let acc_m = _mm_add_ss(acc_m, _mm_movehdup_ps(acc_m)); + + Ok(hsum_float_8(acc) + _mm_cvtss_f32(acc_m)) + } +} diff --git a/candle-core/src/quantized/k_quants.rs b/candle-core/src/quantized/k_quants.rs index 7b405ec9..7f14600b 100644 --- a/candle-core/src/quantized/k_quants.rs +++ b/candle-core/src/quantized/k_quants.rs @@ -1104,6 +1104,9 @@ impl GgmlType for BlockQ4K { #[allow(unreachable_code)] fn vec_dot(n: usize, xs: &[Self], ys: &[Self::VecDotType]) -> Result<f32> { + #[cfg(target_feature = "avx")] + return super::avx::vec_dot_q4k_q8k(n, xs, ys); + #[cfg(target_feature = "neon")] return super::neon::vec_dot_q4k_q8k(n, xs, ys); |