summaryrefslogtreecommitdiff
path: root/candle-core/src
diff options
context:
space:
mode:
Diffstat (limited to 'candle-core/src')
-rw-r--r--candle-core/src/backprop.rs2
-rw-r--r--candle-core/src/lib.rs33
-rw-r--r--candle-core/src/tensor.rs30
3 files changed, 62 insertions, 3 deletions
diff --git a/candle-core/src/backprop.rs b/candle-core/src/backprop.rs
index f4f90373..c6d55e61 100644
--- a/candle-core/src/backprop.rs
+++ b/candle-core/src/backprop.rs
@@ -256,7 +256,7 @@ impl Tensor {
// we scale the gradient for this case).
let node_upsampled = node.upsample_nearest2d(h, w)?;
let mask = arg.eq(&node_upsampled)?.to_dtype(arg.dtype())?;
- let avg = mask.avg_pool2d(*kernel_size, *stride)?;
+ let avg = mask.avg_pool2d_with_stride(*kernel_size, *stride)?;
let grad_arg = ((grad * avg)?.upsample_nearest2d(h, w)? * mask)?;
let sum_grad = grads.or_insert(arg)?;
*sum_grad = sum_grad.add(&grad_arg)?;
diff --git a/candle-core/src/lib.rs b/candle-core/src/lib.rs
index fa85f6e0..a0347416 100644
--- a/candle-core/src/lib.rs
+++ b/candle-core/src/lib.rs
@@ -91,3 +91,36 @@ extern crate intel_mkl_src;
#[cfg(feature = "accelerate")]
extern crate accelerate_src;
+
+pub trait ToUsize2 {
+ fn to_usize2(self) -> (usize, usize);
+}
+
+impl ToUsize2 for usize {
+ fn to_usize2(self) -> (usize, usize) {
+ (self, self)
+ }
+}
+
+impl ToUsize2 for (usize, usize) {
+ fn to_usize2(self) -> (usize, usize) {
+ self
+ }
+}
+
+// A simple trait defining a module with forward method using a single argument.
+pub trait Module: std::fmt::Debug {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor>;
+
+ /// Change the module to use training mode vs eval mode.
+ ///
+ /// The default implementation does nothing as this is only used for a couple modules such as
+ /// dropout or batch-normalization.
+ fn set_training(&mut self, _training: bool) {}
+}
+
+impl Module for quantized::QMatMul {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ self.forward(xs)
+ }
+}
diff --git a/candle-core/src/tensor.rs b/candle-core/src/tensor.rs
index 75b3743d..f834e040 100644
--- a/candle-core/src/tensor.rs
+++ b/candle-core/src/tensor.rs
@@ -797,7 +797,18 @@ impl Tensor {
Ok(from_storage(storage, (n, c, target_h, target_w), op, false))
}
- pub fn avg_pool2d(&self, kernel_size: (usize, usize), stride: (usize, usize)) -> Result<Self> {
+ pub fn avg_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
+ let sz = sz.to_usize2();
+ self.avg_pool2d_with_stride(sz, sz)
+ }
+
+ pub fn avg_pool2d_with_stride<T: crate::ToUsize2>(
+ &self,
+ kernel_size: T,
+ stride: T,
+ ) -> Result<Self> {
+ let kernel_size = kernel_size.to_usize2();
+ let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
// https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html#torch.nn.AvgPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
@@ -813,7 +824,18 @@ impl Tensor {
Ok(from_storage(storage, (n, c, h_out, w_out), op, false))
}
- pub fn max_pool2d(&self, kernel_size: (usize, usize), stride: (usize, usize)) -> Result<Self> {
+ pub fn max_pool2d<T: crate::ToUsize2>(&self, sz: T) -> Result<Self> {
+ let sz = sz.to_usize2();
+ self.max_pool2d_with_stride(sz, sz)
+ }
+
+ pub fn max_pool2d_with_stride<T: crate::ToUsize2>(
+ &self,
+ kernel_size: T,
+ stride: T,
+ ) -> Result<Self> {
+ let kernel_size = kernel_size.to_usize2();
+ let stride = stride.to_usize2();
let (n, c, h, w) = self.dims4()?;
// https://pytorch.org/docs/stable/generated/torch.nn.MaxPool2d.html#torch.nn.MaxPool2d
let h_out = (h - kernel_size.0) / stride.0 + 1;
@@ -1855,6 +1877,10 @@ impl Tensor {
}
}
+ pub fn apply<M: crate::Module>(&self, m: &M) -> Result<Self> {
+ m.forward(self)
+ }
+
pub(crate) fn storage(&self) -> std::sync::RwLockReadGuard<'_, Storage> {
self.storage.read().unwrap()
}