diff options
Diffstat (limited to 'candle-core/src')
-rw-r--r-- | candle-core/src/backend.rs | 2 | ||||
-rw-r--r-- | candle-core/src/cpu_backend.rs | 48 | ||||
-rw-r--r-- | candle-core/src/cuda_backend.rs | 4 | ||||
-rw-r--r-- | candle-core/src/dummy_cuda_backend.rs | 4 | ||||
-rw-r--r-- | candle-core/src/storage.rs | 17 |
5 files changed, 71 insertions, 4 deletions
diff --git a/candle-core/src/backend.rs b/candle-core/src/backend.rs index 345db0e5..307b56dc 100644 --- a/candle-core/src/backend.rs +++ b/candle-core/src/backend.rs @@ -37,6 +37,8 @@ pub trait BackendStorage: Sized { _params: &crate::conv::ParamsConv1D, ) -> Result<Self>; + fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self>; + fn gather(&self, _: &Layout, _: &Self, _: &Layout, _: usize) -> Result<Self>; fn scatter_add( &self, diff --git a/candle-core/src/cpu_backend.rs b/candle-core/src/cpu_backend.rs index 4aa2f880..401a2c0e 100644 --- a/candle-core/src/cpu_backend.rs +++ b/candle-core/src/cpu_backend.rs @@ -633,6 +633,45 @@ impl Map1 for Affine { } } +struct AvgPool2D((usize, usize), (usize, usize)); + +impl Map1 for AvgPool2D { + fn f<T: WithDType>(&self, src: &[T], layout: &Layout) -> Result<Vec<T>> { + // https://pytorch.org/docs/stable/generated/torch.nn.AvgPool2d.html + let (k_h, k_w) = self.0; + let (s_h, s_w) = self.1; + let (b_sz, c, h, w) = layout.shape().dims4()?; + let stride = layout.stride(); + let (stride_h, stride_w) = (stride[2], stride[3]); + let h_out = (h - k_h) / s_h + 1; + let w_out = (w - k_w) / s_w + 1; + let src_index = layout.start_offset(); + let mut dst = vec![T::zero(); b_sz * c * h_out * w_out]; + let scale = 1f64 / (k_h * k_w) as f64; + let scale = T::from_f64(scale); + for b_idx in 0..b_sz { + let dst = &mut dst[b_idx * c * h_out * w_out..]; + let src_index = src_index + b_idx * stride[0]; + for c_idx in 0..c { + let dst = &mut dst[c_idx * h_out * w_out..]; + let src_index = src_index + c_idx * stride[1]; + for h_idx in 0..h_out { + for w_idx in 0..w_out { + let mut sum = T::zero(); + for m in 0..k_h { + for n in 0..k_w { + sum += src[src_index + m * stride_h + n * stride_w] + } + } + dst[h_idx * w_out + w_idx] = sum * scale; + } + } + } + } + Ok(dst) + } +} + struct Gather<'a, I: IntDType> { ids: &'a [I], ids_l: &'a Layout, @@ -1529,6 +1568,15 @@ impl BackendStorage for CpuStorage { Affine(mul, add).map(self, layout) } + fn avg_pool2d( + &self, + layout: &Layout, + kernel_size: (usize, usize), + stride: (usize, usize), + ) -> Result<Self> { + AvgPool2D(kernel_size, stride).map(self, layout) + } + fn elu(&self, layout: &Layout, alpha: f64) -> Result<Self> { // TODO: Have some generic map for functions that apply on num_traits::Float elements. match self { diff --git a/candle-core/src/cuda_backend.rs b/candle-core/src/cuda_backend.rs index 7b4b358d..e71ecfce 100644 --- a/candle-core/src/cuda_backend.rs +++ b/candle-core/src/cuda_backend.rs @@ -1381,6 +1381,10 @@ impl BackendStorage for CudaStorage { Ok(Self { slice, device }) } + fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { + todo!() + } + fn index_select(&self, ids: &Self, l: &Layout, ids_l: &Layout, dim: usize) -> Result<Self> { let device = self.device().clone(); let slice = IndexSelect(ids, ids_l, dim).map(&self.slice, &device, l)?; diff --git a/candle-core/src/dummy_cuda_backend.rs b/candle-core/src/dummy_cuda_backend.rs index 17d4a22e..2d5f955c 100644 --- a/candle-core/src/dummy_cuda_backend.rs +++ b/candle-core/src/dummy_cuda_backend.rs @@ -119,6 +119,10 @@ impl crate::backend::BackendStorage for CudaStorage { fn copy_strided_src(&self, _: &mut Self, _: usize, _: &Layout) -> Result<()> { Err(Error::NotCompiledWithCudaSupport) } + + fn avg_pool2d(&self, _: &Layout, _: (usize, usize), _: (usize, usize)) -> Result<Self> { + Err(Error::NotCompiledWithCudaSupport) + } } impl crate::backend::BackendDevice for CudaDevice { diff --git a/candle-core/src/storage.rs b/candle-core/src/storage.rs index cbca4fc4..47df689c 100644 --- a/candle-core/src/storage.rs +++ b/candle-core/src/storage.rs @@ -268,11 +268,20 @@ impl Storage { pub(crate) fn avg_pool2d( &self, - _layout: &Layout, - _kernel_size: (usize, usize), - _stride: (usize, usize), + layout: &Layout, + kernel_size: (usize, usize), + stride: (usize, usize), ) -> Result<Self> { - todo!() + match self { + Storage::Cpu(storage) => { + let storage = storage.avg_pool2d(layout, kernel_size, stride)?; + Ok(Self::Cpu(storage)) + } + Self::Cuda(storage) => { + let storage = storage.avg_pool2d(layout, kernel_size, stride)?; + Ok(Self::Cuda(storage)) + } + } } pub(crate) fn upsample_nearest2d( |