diff options
Diffstat (limited to 'candle-examples/examples/bert')
-rw-r--r-- | candle-examples/examples/bert/main.rs | 3 | ||||
-rw-r--r-- | candle-examples/examples/bert/model.rs | 568 |
2 files changed, 1 insertions, 570 deletions
diff --git a/candle-examples/examples/bert/main.rs b/candle-examples/examples/bert/main.rs index 6cee66ee..9d0eccdf 100644 --- a/candle-examples/examples/bert/main.rs +++ b/candle-examples/examples/bert/main.rs @@ -3,14 +3,13 @@ extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; -mod model; +use candle_transformers::models::bert::{BertModel, Config, DTYPE}; use anyhow::{anyhow, Error as E, Result}; use candle::Tensor; use candle_nn::VarBuilder; use clap::Parser; use hf_hub::{api::sync::Api, Cache, Repo, RepoType}; -use model::{BertModel, Config, DTYPE}; use tokenizers::{PaddingParams, Tokenizer}; #[derive(Parser, Debug)] diff --git a/candle-examples/examples/bert/model.rs b/candle-examples/examples/bert/model.rs deleted file mode 100644 index 3f164a3a..00000000 --- a/candle-examples/examples/bert/model.rs +++ /dev/null @@ -1,568 +0,0 @@ -use candle::{DType, Device, Result, Tensor}; -use candle_nn::{Embedding, Module, VarBuilder}; -use serde::Deserialize; - -pub const DTYPE: DType = DType::F32; - -#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize)] -#[serde(rename_all = "lowercase")] -enum HiddenAct { - Gelu, - Relu, -} - -struct HiddenActLayer { - act: HiddenAct, - span: tracing::Span, -} - -impl HiddenActLayer { - fn new(act: HiddenAct) -> Self { - let span = tracing::span!(tracing::Level::TRACE, "hidden-act"); - Self { act, span } - } - - fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> { - let _enter = self.span.enter(); - match self.act { - // TODO: The all-MiniLM-L6-v2 model uses "gelu" whereas this is "gelu_new", this explains some - // small numerical difference. - // https://github.com/huggingface/transformers/blob/cd4584e3c809bb9e1392ccd3fe38b40daba5519a/src/transformers/activations.py#L213 - HiddenAct::Gelu => xs.gelu(), - HiddenAct::Relu => xs.relu(), - } - } -} - -#[derive(Debug)] -pub struct Linear { - weight: Tensor, - bias: Option<Tensor>, - span: tracing::Span, -} - -impl Linear { - pub fn new(weight: Tensor, bias: Option<Tensor>) -> Self { - let span = tracing::span!(tracing::Level::TRACE, "linear"); - Self { weight, bias, span } - } - - pub fn forward(&self, x: &Tensor) -> candle::Result<Tensor> { - let _enter = self.span.enter(); - let w = match x.dims() { - &[bsize, _, _] => self.weight.broadcast_left(bsize)?.t()?, - _ => self.weight.t()?, - }; - let x = x.matmul(&w)?; - match &self.bias { - None => Ok(x), - Some(bias) => x.broadcast_add(bias), - } - } -} - -#[derive(Debug)] -pub struct LayerNorm { - weight: Tensor, - bias: Tensor, - eps: f64, - span: tracing::Span, -} - -impl LayerNorm { - pub fn new(weight: Tensor, bias: Tensor, eps: f64) -> Self { - let span = tracing::span!(tracing::Level::TRACE, "layer-norm"); - Self { - weight, - bias, - eps, - span, - } - } - - pub fn forward(&self, x: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let x_dtype = x.dtype(); - let internal_dtype = match x_dtype { - DType::F16 | DType::BF16 => DType::F32, - d => d, - }; - let (_bsize, _seq_len, hidden_size) = x.dims3()?; - let x = x.to_dtype(internal_dtype)?; - let mean_x = (x.sum_keepdim(2)? / hidden_size as f64)?; - let x = x.broadcast_sub(&mean_x)?; - let norm_x = (x.sqr()?.sum_keepdim(2)? / hidden_size as f64)?; - let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?; - let x = x_normed - .to_dtype(x_dtype)? - .broadcast_mul(&self.weight)? - .broadcast_add(&self.bias)?; - Ok(x) - } -} -#[derive(Debug, Clone, Copy, PartialEq, Eq, Deserialize, Default)] -#[serde(rename_all = "lowercase")] -enum PositionEmbeddingType { - #[default] - Absolute, -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/configuration_bert.py#L1 -#[derive(Debug, Clone, PartialEq, Deserialize)] -pub struct Config { - vocab_size: usize, - hidden_size: usize, - num_hidden_layers: usize, - num_attention_heads: usize, - intermediate_size: usize, - hidden_act: HiddenAct, - hidden_dropout_prob: f64, - max_position_embeddings: usize, - type_vocab_size: usize, - initializer_range: f64, - layer_norm_eps: f64, - pad_token_id: usize, - #[serde(default)] - position_embedding_type: PositionEmbeddingType, - #[serde(default)] - use_cache: bool, - classifier_dropout: Option<f64>, - model_type: Option<String>, -} - -impl Default for Config { - fn default() -> Self { - Self { - vocab_size: 30522, - hidden_size: 768, - num_hidden_layers: 12, - num_attention_heads: 12, - intermediate_size: 3072, - hidden_act: HiddenAct::Gelu, - hidden_dropout_prob: 0.1, - max_position_embeddings: 512, - type_vocab_size: 2, - initializer_range: 0.02, - layer_norm_eps: 1e-12, - pad_token_id: 0, - position_embedding_type: PositionEmbeddingType::Absolute, - use_cache: true, - classifier_dropout: None, - model_type: Some("bert".to_string()), - } - } -} - -impl Config { - fn _all_mini_lm_l6_v2() -> Self { - // https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/blob/main/config.json - Self { - vocab_size: 30522, - hidden_size: 384, - num_hidden_layers: 6, - num_attention_heads: 12, - intermediate_size: 1536, - hidden_act: HiddenAct::Gelu, - hidden_dropout_prob: 0.1, - max_position_embeddings: 512, - type_vocab_size: 2, - initializer_range: 0.02, - layer_norm_eps: 1e-12, - pad_token_id: 0, - position_embedding_type: PositionEmbeddingType::Absolute, - use_cache: true, - classifier_dropout: None, - model_type: Some("bert".to_string()), - } - } -} - -fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> { - let embeddings = vb.get((vocab_size, hidden_size), "weight")?; - Ok(Embedding::new(embeddings, hidden_size)) -} - -fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> { - let weight = vb.get((size2, size1), "weight")?; - let bias = vb.get(size2, "bias")?; - Ok(Linear::new(weight, Some(bias))) -} - -struct Dropout { - #[allow(dead_code)] - pr: f64, -} - -impl Dropout { - fn new(pr: f64) -> Self { - Self { pr } - } - - fn forward(&self, x: &Tensor) -> Result<Tensor> { - // TODO - Ok(x.clone()) - } -} - -fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> { - let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) { - (Ok(weight), Ok(bias)) => (weight, bias), - (Err(err), _) | (_, Err(err)) => { - if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) { - (weight, bias) - } else { - return Err(err); - } - } - }; - Ok(LayerNorm::new(weight, bias, eps)) -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L180 -struct BertEmbeddings { - word_embeddings: Embedding, - position_embeddings: Option<Embedding>, - token_type_embeddings: Embedding, - layer_norm: LayerNorm, - dropout: Dropout, - span: tracing::Span, -} - -impl BertEmbeddings { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let word_embeddings = embedding( - config.vocab_size, - config.hidden_size, - vb.pp("word_embeddings"), - )?; - let position_embeddings = embedding( - config.max_position_embeddings, - config.hidden_size, - vb.pp("position_embeddings"), - )?; - let token_type_embeddings = embedding( - config.type_vocab_size, - config.hidden_size, - vb.pp("token_type_embeddings"), - )?; - let layer_norm = layer_norm( - config.hidden_size, - config.layer_norm_eps, - vb.pp("LayerNorm"), - )?; - Ok(Self { - word_embeddings, - position_embeddings: Some(position_embeddings), - token_type_embeddings, - layer_norm, - dropout: Dropout::new(config.hidden_dropout_prob), - span: tracing::span!(tracing::Level::TRACE, "embeddings"), - }) - } - - fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let (_bsize, seq_len) = input_ids.dims2()?; - let input_embeddings = self.word_embeddings.forward(input_ids)?; - let token_type_embeddings = self.token_type_embeddings.forward(token_type_ids)?; - let mut embeddings = (&input_embeddings + token_type_embeddings)?; - if let Some(position_embeddings) = &self.position_embeddings { - // TODO: Proper absolute positions? - let position_ids = (0..seq_len as u32).collect::<Vec<_>>(); - let position_ids = Tensor::new(&position_ids[..], input_ids.device())?; - embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)? - } - let embeddings = self.layer_norm.forward(&embeddings)?; - let embeddings = self.dropout.forward(&embeddings)?; - Ok(embeddings) - } -} - -struct BertSelfAttention { - query: Linear, - key: Linear, - value: Linear, - dropout: Dropout, - num_attention_heads: usize, - attention_head_size: usize, - span: tracing::Span, - span_softmax: tracing::Span, -} - -impl BertSelfAttention { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let attention_head_size = config.hidden_size / config.num_attention_heads; - let all_head_size = config.num_attention_heads * attention_head_size; - let dropout = Dropout::new(config.hidden_dropout_prob); - let hidden_size = config.hidden_size; - let query = linear(hidden_size, all_head_size, vb.pp("query"))?; - let value = linear(hidden_size, all_head_size, vb.pp("value"))?; - let key = linear(hidden_size, all_head_size, vb.pp("key"))?; - Ok(Self { - query, - key, - value, - dropout, - num_attention_heads: config.num_attention_heads, - attention_head_size, - span: tracing::span!(tracing::Level::TRACE, "self-attn"), - span_softmax: tracing::span!(tracing::Level::TRACE, "softmax"), - }) - } - - fn transpose_for_scores(&self, xs: &Tensor) -> Result<Tensor> { - let mut new_x_shape = xs.dims().to_vec(); - new_x_shape.pop(); - new_x_shape.push(self.num_attention_heads); - new_x_shape.push(self.attention_head_size); - let xs = xs.reshape(new_x_shape.as_slice())?.transpose(1, 2)?; - xs.contiguous() - } - - fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let query_layer = self.query.forward(hidden_states)?; - let key_layer = self.key.forward(hidden_states)?; - let value_layer = self.value.forward(hidden_states)?; - - let query_layer = self.transpose_for_scores(&query_layer)?; - let key_layer = self.transpose_for_scores(&key_layer)?; - let value_layer = self.transpose_for_scores(&value_layer)?; - - let attention_scores = query_layer.matmul(&key_layer.t()?)?; - let attention_scores = (attention_scores / (self.attention_head_size as f64).sqrt())?; - let attention_probs = { - let _enter_sm = self.span_softmax.enter(); - candle_nn::ops::softmax(&attention_scores, candle::D::Minus1)? - }; - let attention_probs = self.dropout.forward(&attention_probs)?; - - let context_layer = attention_probs.matmul(&value_layer)?; - let context_layer = context_layer.transpose(1, 2)?.contiguous()?; - let context_layer = context_layer.flatten_from(candle::D::Minus2)?; - Ok(context_layer) - } -} - -struct BertSelfOutput { - dense: Linear, - layer_norm: LayerNorm, - dropout: Dropout, - span: tracing::Span, -} - -impl BertSelfOutput { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let dense = linear(config.hidden_size, config.hidden_size, vb.pp("dense"))?; - let layer_norm = layer_norm( - config.hidden_size, - config.layer_norm_eps, - vb.pp("LayerNorm"), - )?; - let dropout = Dropout::new(config.hidden_dropout_prob); - Ok(Self { - dense, - layer_norm, - dropout, - span: tracing::span!(tracing::Level::TRACE, "self-out"), - }) - } - - fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let hidden_states = self.dense.forward(hidden_states)?; - let hidden_states = self.dropout.forward(&hidden_states)?; - self.layer_norm.forward(&(hidden_states + input_tensor)?) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L392 -struct BertAttention { - self_attention: BertSelfAttention, - self_output: BertSelfOutput, - span: tracing::Span, -} - -impl BertAttention { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let self_attention = BertSelfAttention::load(vb.pp("self"), config)?; - let self_output = BertSelfOutput::load(vb.pp("output"), config)?; - Ok(Self { - self_attention, - self_output, - span: tracing::span!(tracing::Level::TRACE, "attn"), - }) - } - - fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let self_outputs = self.self_attention.forward(hidden_states)?; - let attention_output = self.self_output.forward(&self_outputs, hidden_states)?; - Ok(attention_output) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L441 -struct BertIntermediate { - dense: Linear, - intermediate_act: HiddenActLayer, - span: tracing::Span, -} - -impl BertIntermediate { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let dense = linear(config.hidden_size, config.intermediate_size, vb.pp("dense"))?; - Ok(Self { - dense, - intermediate_act: HiddenActLayer::new(config.hidden_act), - span: tracing::span!(tracing::Level::TRACE, "inter"), - }) - } - - fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let hidden_states = self.dense.forward(hidden_states)?; - let ys = self.intermediate_act.forward(&hidden_states)?; - Ok(ys) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L456 -struct BertOutput { - dense: Linear, - layer_norm: LayerNorm, - dropout: Dropout, - span: tracing::Span, -} - -impl BertOutput { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let dense = linear(config.intermediate_size, config.hidden_size, vb.pp("dense"))?; - let layer_norm = layer_norm( - config.hidden_size, - config.layer_norm_eps, - vb.pp("LayerNorm"), - )?; - let dropout = Dropout::new(config.hidden_dropout_prob); - Ok(Self { - dense, - layer_norm, - dropout, - span: tracing::span!(tracing::Level::TRACE, "out"), - }) - } - - fn forward(&self, hidden_states: &Tensor, input_tensor: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let hidden_states = self.dense.forward(hidden_states)?; - let hidden_states = self.dropout.forward(&hidden_states)?; - self.layer_norm.forward(&(hidden_states + input_tensor)?) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L470 -struct BertLayer { - attention: BertAttention, - intermediate: BertIntermediate, - output: BertOutput, - span: tracing::Span, -} - -impl BertLayer { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let attention = BertAttention::load(vb.pp("attention"), config)?; - let intermediate = BertIntermediate::load(vb.pp("intermediate"), config)?; - let output = BertOutput::load(vb.pp("output"), config)?; - Ok(Self { - attention, - intermediate, - output, - span: tracing::span!(tracing::Level::TRACE, "layer"), - }) - } - - fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let attention_output = self.attention.forward(hidden_states)?; - // TODO: Support cross-attention? - // https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L523 - // TODO: Support something similar to `apply_chunking_to_forward`? - let intermediate_output = self.intermediate.forward(&attention_output)?; - let layer_output = self - .output - .forward(&intermediate_output, &attention_output)?; - Ok(layer_output) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L556 -struct BertEncoder { - layers: Vec<BertLayer>, - span: tracing::Span, -} - -impl BertEncoder { - fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let layers = (0..config.num_hidden_layers) - .map(|index| BertLayer::load(vb.pp(&format!("layer.{index}")), config)) - .collect::<Result<Vec<_>>>()?; - let span = tracing::span!(tracing::Level::TRACE, "encoder"); - Ok(BertEncoder { layers, span }) - } - - fn forward(&self, hidden_states: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let mut hidden_states = hidden_states.clone(); - // Use a loop rather than a fold as it's easier to modify when adding debug/... - for layer in self.layers.iter() { - hidden_states = layer.forward(&hidden_states)? - } - Ok(hidden_states) - } -} - -// https://github.com/huggingface/transformers/blob/6eedfa6dd15dc1e22a55ae036f681914e5a0d9a1/src/transformers/models/bert/modeling_bert.py#L874 -pub struct BertModel { - embeddings: BertEmbeddings, - encoder: BertEncoder, - pub device: Device, - span: tracing::Span, -} - -impl BertModel { - pub fn load(vb: VarBuilder, config: &Config) -> Result<Self> { - let (embeddings, encoder) = match ( - BertEmbeddings::load(vb.pp("embeddings"), config), - BertEncoder::load(vb.pp("encoder"), config), - ) { - (Ok(embeddings), Ok(encoder)) => (embeddings, encoder), - (Err(err), _) | (_, Err(err)) => { - if let Some(model_type) = &config.model_type { - if let (Ok(embeddings), Ok(encoder)) = ( - BertEmbeddings::load(vb.pp(&format!("{model_type}.embeddings")), config), - BertEncoder::load(vb.pp(&format!("{model_type}.encoder")), config), - ) { - (embeddings, encoder) - } else { - return Err(err); - } - } else { - return Err(err); - } - } - }; - Ok(Self { - embeddings, - encoder, - device: vb.device().clone(), - span: tracing::span!(tracing::Level::TRACE, "model"), - }) - } - - pub fn forward(&self, input_ids: &Tensor, token_type_ids: &Tensor) -> Result<Tensor> { - let _enter = self.span.enter(); - let embedding_output = self.embeddings.forward(input_ids, token_type_ids)?; - let sequence_output = self.encoder.forward(&embedding_output)?; - Ok(sequence_output) - } -} |