diff options
Diffstat (limited to 'candle-examples/examples/dinov2/main.rs')
-rw-r--r-- | candle-examples/examples/dinov2/main.rs | 283 |
1 files changed, 4 insertions, 279 deletions
diff --git a/candle-examples/examples/dinov2/main.rs b/candle-examples/examples/dinov2/main.rs index e80c81e2..d3adb37c 100644 --- a/candle-examples/examples/dinov2/main.rs +++ b/candle-examples/examples/dinov2/main.rs @@ -9,285 +9,10 @@ extern crate accelerate_src; use clap::Parser; -use candle::{DType, IndexOp, Result, Tensor, D}; -use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; +use candle::{DType, IndexOp, D}; +use candle_nn::{Module, VarBuilder}; +use candle_transformers::models::dinov2; -const IMG_SIZE: usize = 518; -const PATCH_SIZE: usize = 14; -const NUM_CLASSES: usize = 1000; - -fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> { - if bias { - candle_nn::linear(in_dim, out_dim, vb) - } else { - candle_nn::linear_no_bias(in_dim, out_dim, vb) - } -} - -#[derive(Debug)] -struct Attention { - qkv: Linear, - proj: Linear, - num_heads: usize, - scale: f64, -} - -impl Attention { - fn new( - vb: VarBuilder, - dim: usize, - num_heads: usize, - qkv_bias: bool, - proj_bias: bool, - ) -> Result<Self> { - let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?; - let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?; - let scale = 1. / ((dim / num_heads) as f64).sqrt(); - Ok(Self { - qkv, - proj, - num_heads, - scale, - }) - } -} - -impl Module for Attention { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let (b, n, c) = xs.dims3()?; - let qkv = self - .qkv - .forward(xs)? - .reshape((b, n, 3, self.num_heads, c / self.num_heads))? - .transpose(1, 2)? // 02134 - .transpose(0, 1)? // 20134 - .transpose(2, 3)?; // 20314 - let q = (qkv.i(0)? * self.scale)?; - let k = qkv.i(1)?; - let v = qkv.i(2)?; - let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?; - let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?; - self.proj.forward(&attn) - } -} - -#[derive(Debug)] -struct LayerScale { - gamma: Tensor, -} - -impl LayerScale { - fn new(vb: VarBuilder, dim: usize) -> Result<Self> { - let gamma = vb.get(dim, "gamma")?; - Ok(Self { gamma }) - } -} - -impl Module for LayerScale { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - xs.broadcast_mul(&self.gamma) - } -} - -#[derive(Debug)] -struct Mlp { - fc1: Linear, - fc2: Linear, -} - -impl Mlp { - fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> { - let out_features = in_features; - let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?; - let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?; - Ok(Self { fc1, fc2 }) - } -} - -impl Module for Mlp { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let xs = self.fc1.forward(xs)?.gelu()?; - self.fc2.forward(&xs) - } -} - -#[derive(Debug)] -struct Block { - norm1: LayerNorm, - attn: Attention, - ls1: LayerScale, - norm2: LayerNorm, - mlp: Mlp, - ls2: LayerScale, -} - -impl Block { - fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { - let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; - let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?; - let ls1 = LayerScale::new(vb.pp("ls1"), dim)?; - let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; - let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?; - let ls2 = LayerScale::new(vb.pp("ls2"), dim)?; - Ok(Self { - norm1, - attn, - ls1, - norm2, - mlp, - ls2, - }) - } -} - -impl Module for Block { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let residual = xs; - let xs = self - .ls1 - .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?; - let xs = (xs + residual)?; - let residual = &xs; - let xs = self - .ls2 - .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?; - xs + residual - } -} - -#[derive(Debug)] -struct PatchEmbed { - proj: candle_nn::Conv2d, - patch_size: (usize, usize), - num_patches: usize, -} - -impl PatchEmbed { - fn new( - vb: VarBuilder, - img_size: usize, - patch_size: usize, - in_chans: usize, - embed_dim: usize, - ) -> Result<Self> { - let config = candle_nn::Conv2dConfig { - stride: patch_size, - ..Default::default() - }; - let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?; - let num_patches = (img_size / patch_size) * (img_size / patch_size); - Ok(Self { - proj, - patch_size: (patch_size, patch_size), - num_patches, - }) - } -} - -impl Module for PatchEmbed { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let (_b, _c, h, w) = xs.dims4()?; - let (patch_h, patch_w) = self.patch_size; - if (h % patch_h) != 0 { - candle::bail!("image height {h} is not a multiple of patch height {patch_h}") - } - if (w % patch_w) != 0 { - candle::bail!("image width {w} is not a multiple of patch width {patch_w}") - } - let xs = self.proj.forward(xs)?; - let (b, c, h, w) = xs.dims4()?; - // flatten embeddings. - xs.reshape((b, c, h * w))?.transpose(1, 2) - } -} - -#[derive(Debug)] -pub struct DinoVisionTransformer { - patch_embed: PatchEmbed, - cls_token: Tensor, - pos_embed: Tensor, - blocks: Vec<Block>, - norm: LayerNorm, - head: Linear, -} - -impl DinoVisionTransformer { - pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> { - let patch_embed = - PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?; - let cls_token = vb.get((1, 1, embed_dim), "cls_token")?; - let num_tokens = 1; - let pos_embed = vb.get( - (1, patch_embed.num_patches + num_tokens, embed_dim), - "pos_embed", - )?; - let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?; - let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?; - let vb_b = vb.pp("blocks"); - let blocks = (0..depth) - .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads)) - .collect::<Result<Vec<_>>>()?; - Ok(Self { - patch_embed, - cls_token, - pos_embed, - blocks, - norm, - head, - }) - } - - fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> { - let npatch = xs.dim(1)? - 1; - let n = self.pos_embed.dim(1)? - 1; - let sqrt_n = (n as f64).sqrt(); - if npatch == n && w == h { - return Ok(xs.clone()); - } - let class_pos_embed = self.pos_embed.i((.., ..1))?; - let patch_pos_embed = self.pos_embed.i((.., 1..))?; - let dim = xs.dim(D::Minus1)?; - let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1); - let patch_pos_embed = patch_pos_embed - .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))? - .transpose(2, 3)? - .transpose(1, 2)?; - // This uses bicubic interpolation in the original implementation. - let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?; - let el_count = patch_pos_embed.shape().elem_count(); - let patch_pos_embed = - patch_pos_embed - .transpose(1, 2)? - .transpose(2, 3)? - .reshape((1, el_count / dim, dim))?; - Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1) - } - - fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> { - let (_b, _nc, w, h) = xs.dims4()?; - let xs = self.patch_embed.forward(xs)?; - let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?; - &xs + &self.interpolate_pos_encoding(&xs, w, h)? - } -} - -impl Module for DinoVisionTransformer { - fn forward(&self, xs: &Tensor) -> Result<Tensor> { - let mut xs = self.prepare_tokens_with_mask(xs)?; - for blk in self.blocks.iter() { - xs = blk.forward(&xs)? - } - let xs = self.norm.forward(&xs)?; - let xs_norm_clstoken = xs.i((.., 0))?; - let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?; - let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?; - self.head.forward(&xs) - } -} - -pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> { - DinoVisionTransformer::new(vb, 12, 384, 6) -} #[derive(Parser)] struct Args { #[arg(long)] @@ -320,7 +45,7 @@ pub fn main() -> anyhow::Result<()> { let weights = unsafe { candle::safetensors::MmapedFile::new(model_file)? }; let weights = weights.deserialize()?; let vb = VarBuilder::from_safetensors(vec![weights], DType::F32, &device); - let model = vit_small(vb)?; + let model = dinov2::vit_small(vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? |