diff options
Diffstat (limited to 'candle-examples/examples/mnist-training')
-rw-r--r-- | candle-examples/examples/mnist-training/main.rs | 139 |
1 files changed, 15 insertions, 124 deletions
diff --git a/candle-examples/examples/mnist-training/main.rs b/candle-examples/examples/mnist-training/main.rs index 5bc2e99b..e251f6e9 100644 --- a/candle-examples/examples/mnist-training/main.rs +++ b/candle-examples/examples/mnist-training/main.rs @@ -4,128 +4,20 @@ extern crate intel_mkl_src; use clap::{Parser, ValueEnum}; -use candle::{DType, Device, Result, Shape, Tensor, Var, D}; -use candle_nn::{loss, ops, Init, Linear}; -use std::sync::{Arc, Mutex}; +use candle::{DType, Result, Tensor, D}; +use candle_nn::{loss, ops, Linear, VarBuilder, VarMap}; const IMAGE_DIM: usize = 784; const LABELS: usize = 10; -struct TensorData { - tensors: std::collections::HashMap<String, Var>, - pub dtype: DType, - pub device: Device, -} - -// A variant of candle_nn::VarBuilder for initializing variables before training. -#[derive(Clone)] -struct VarStore { - data: Arc<Mutex<TensorData>>, - path: Vec<String>, -} - -impl VarStore { - fn new(dtype: DType, device: Device) -> Self { - let data = TensorData { - tensors: std::collections::HashMap::new(), - dtype, - device, - }; - Self { - data: Arc::new(Mutex::new(data)), - path: vec![], - } - } - - fn pp(&self, s: &str) -> Self { - let mut path = self.path.clone(); - path.push(s.to_string()); - Self { - data: self.data.clone(), - path, - } - } - - fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str, init: Init) -> Result<Tensor> { - let shape = shape.into(); - let path = if self.path.is_empty() { - tensor_name.to_string() - } else { - [&self.path.join("."), tensor_name].join(".") - }; - let mut tensor_data = self.data.lock().unwrap(); - if let Some(tensor) = tensor_data.tensors.get(&path) { - let tensor_shape = tensor.shape(); - if &shape != tensor_shape { - candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}") - } - return Ok(tensor.as_tensor().clone()); - } - let var = init.var(shape, tensor_data.dtype, &tensor_data.device)?; - let tensor = var.as_tensor().clone(); - tensor_data.tensors.insert(path, var); - Ok(tensor) - } - - fn all_vars(&self) -> Vec<Var> { - let tensor_data = self.data.lock().unwrap(); - #[allow(clippy::map_clone)] - tensor_data - .tensors - .values() - .map(|c| c.clone()) - .collect::<Vec<_>>() - } - - fn save<P: AsRef<std::path::Path>>(&self, path: P) -> Result<()> { - let tensor_data = self.data.lock().unwrap(); - let data = tensor_data.tensors.iter().map(|(k, v)| (k, v.as_tensor())); - safetensors::tensor::serialize_to_file(data, &None, path.as_ref())?; - Ok(()) - } - - fn load<P: AsRef<std::path::Path>>(&mut self, path: P) -> Result<()> { - use candle::safetensors::Load; - - let path = path.as_ref(); - let data = unsafe { candle::safetensors::MmapedFile::new(path)? }; - let data = data.deserialize()?; - let mut tensor_data = self.data.lock().unwrap(); - for (name, var) in tensor_data.tensors.iter_mut() { - match data.tensor(name) { - Ok(data) => { - let data: Tensor = data.load(var.device())?; - if let Err(err) = var.set(&data) { - candle::bail!("error setting {name} using data from {path:?}: {err}",) - } - } - Err(_) => candle::bail!("cannot find tensor for {name}"), - } - } - Ok(()) - } -} - -fn linear_z(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> { - let ws = vs.get((out_dim, in_dim), "weight", candle_nn::init::ZERO)?; - let bs = vs.get(out_dim, "bias", candle_nn::init::ZERO)?; - Ok(Linear::new(ws, Some(bs))) -} - -fn linear(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> { - let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL; - let ws = vs.get((out_dim, in_dim), "weight", init_ws)?; - let bound = 1. / (in_dim as f64).sqrt(); - let init_bs = Init::Uniform { - lo: -bound, - up: bound, - }; - let bs = vs.get(out_dim, "bias", init_bs)?; +fn linear_z(in_dim: usize, out_dim: usize, vs: VarBuilder) -> Result<Linear> { + let ws = vs.get_or_init((out_dim, in_dim), "weight", candle_nn::init::ZERO)?; + let bs = vs.get_or_init(out_dim, "bias", candle_nn::init::ZERO)?; Ok(Linear::new(ws, Some(bs))) } trait Model: Sized { - fn new(vs: VarStore) -> Result<Self>; + fn new(vs: VarBuilder) -> Result<Self>; fn forward(&self, xs: &Tensor) -> Result<Tensor>; } @@ -134,7 +26,7 @@ struct LinearModel { } impl Model for LinearModel { - fn new(vs: VarStore) -> Result<Self> { + fn new(vs: VarBuilder) -> Result<Self> { let linear = linear_z(IMAGE_DIM, LABELS, vs)?; Ok(Self { linear }) } @@ -150,9 +42,9 @@ struct Mlp { } impl Model for Mlp { - fn new(vs: VarStore) -> Result<Self> { - let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?; - let ln2 = linear(100, LABELS, vs.pp("ln2"))?; + fn new(vs: VarBuilder) -> Result<Self> { + let ln1 = candle_nn::linear(IMAGE_DIM, 100, vs.pp("ln1"))?; + let ln2 = candle_nn::linear(100, LABELS, vs.pp("ln2"))?; Ok(Self { ln1, ln2 }) } @@ -180,17 +72,16 @@ fn training_loop<M: Model>( let train_images = m.train_images.to_device(&dev)?; let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?; - let mut vs = VarStore::new(DType::F32, dev.clone()); + let mut varmap = VarMap::new(); + let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev); let model = M::new(vs.clone())?; if let Some(load) = &args.load { println!("loading weights from {load}"); - vs.load(load)? + varmap.load(load)? } - let all_vars = vs.all_vars(); - let all_vars = all_vars.iter().collect::<Vec<_>>(); - let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate); + let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate); let test_images = m.test_images.to_device(&dev)?; let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?; for epoch in 1..args.epochs { @@ -215,7 +106,7 @@ fn training_loop<M: Model>( } if let Some(save) = &args.save { println!("saving trained weights in {save}"); - vs.save(save)? + varmap.save(save)? } Ok(()) } |