summaryrefslogtreecommitdiff
path: root/candle-examples/examples/mnist-training
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/mnist-training')
-rw-r--r--candle-examples/examples/mnist-training/main.rs139
1 files changed, 15 insertions, 124 deletions
diff --git a/candle-examples/examples/mnist-training/main.rs b/candle-examples/examples/mnist-training/main.rs
index 5bc2e99b..e251f6e9 100644
--- a/candle-examples/examples/mnist-training/main.rs
+++ b/candle-examples/examples/mnist-training/main.rs
@@ -4,128 +4,20 @@ extern crate intel_mkl_src;
use clap::{Parser, ValueEnum};
-use candle::{DType, Device, Result, Shape, Tensor, Var, D};
-use candle_nn::{loss, ops, Init, Linear};
-use std::sync::{Arc, Mutex};
+use candle::{DType, Result, Tensor, D};
+use candle_nn::{loss, ops, Linear, VarBuilder, VarMap};
const IMAGE_DIM: usize = 784;
const LABELS: usize = 10;
-struct TensorData {
- tensors: std::collections::HashMap<String, Var>,
- pub dtype: DType,
- pub device: Device,
-}
-
-// A variant of candle_nn::VarBuilder for initializing variables before training.
-#[derive(Clone)]
-struct VarStore {
- data: Arc<Mutex<TensorData>>,
- path: Vec<String>,
-}
-
-impl VarStore {
- fn new(dtype: DType, device: Device) -> Self {
- let data = TensorData {
- tensors: std::collections::HashMap::new(),
- dtype,
- device,
- };
- Self {
- data: Arc::new(Mutex::new(data)),
- path: vec![],
- }
- }
-
- fn pp(&self, s: &str) -> Self {
- let mut path = self.path.clone();
- path.push(s.to_string());
- Self {
- data: self.data.clone(),
- path,
- }
- }
-
- fn get<S: Into<Shape>>(&self, shape: S, tensor_name: &str, init: Init) -> Result<Tensor> {
- let shape = shape.into();
- let path = if self.path.is_empty() {
- tensor_name.to_string()
- } else {
- [&self.path.join("."), tensor_name].join(".")
- };
- let mut tensor_data = self.data.lock().unwrap();
- if let Some(tensor) = tensor_data.tensors.get(&path) {
- let tensor_shape = tensor.shape();
- if &shape != tensor_shape {
- candle::bail!("shape mismatch on {path}: {shape:?} <> {tensor_shape:?}")
- }
- return Ok(tensor.as_tensor().clone());
- }
- let var = init.var(shape, tensor_data.dtype, &tensor_data.device)?;
- let tensor = var.as_tensor().clone();
- tensor_data.tensors.insert(path, var);
- Ok(tensor)
- }
-
- fn all_vars(&self) -> Vec<Var> {
- let tensor_data = self.data.lock().unwrap();
- #[allow(clippy::map_clone)]
- tensor_data
- .tensors
- .values()
- .map(|c| c.clone())
- .collect::<Vec<_>>()
- }
-
- fn save<P: AsRef<std::path::Path>>(&self, path: P) -> Result<()> {
- let tensor_data = self.data.lock().unwrap();
- let data = tensor_data.tensors.iter().map(|(k, v)| (k, v.as_tensor()));
- safetensors::tensor::serialize_to_file(data, &None, path.as_ref())?;
- Ok(())
- }
-
- fn load<P: AsRef<std::path::Path>>(&mut self, path: P) -> Result<()> {
- use candle::safetensors::Load;
-
- let path = path.as_ref();
- let data = unsafe { candle::safetensors::MmapedFile::new(path)? };
- let data = data.deserialize()?;
- let mut tensor_data = self.data.lock().unwrap();
- for (name, var) in tensor_data.tensors.iter_mut() {
- match data.tensor(name) {
- Ok(data) => {
- let data: Tensor = data.load(var.device())?;
- if let Err(err) = var.set(&data) {
- candle::bail!("error setting {name} using data from {path:?}: {err}",)
- }
- }
- Err(_) => candle::bail!("cannot find tensor for {name}"),
- }
- }
- Ok(())
- }
-}
-
-fn linear_z(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> {
- let ws = vs.get((out_dim, in_dim), "weight", candle_nn::init::ZERO)?;
- let bs = vs.get(out_dim, "bias", candle_nn::init::ZERO)?;
- Ok(Linear::new(ws, Some(bs)))
-}
-
-fn linear(in_dim: usize, out_dim: usize, vs: VarStore) -> Result<Linear> {
- let init_ws = candle_nn::init::DEFAULT_KAIMING_NORMAL;
- let ws = vs.get((out_dim, in_dim), "weight", init_ws)?;
- let bound = 1. / (in_dim as f64).sqrt();
- let init_bs = Init::Uniform {
- lo: -bound,
- up: bound,
- };
- let bs = vs.get(out_dim, "bias", init_bs)?;
+fn linear_z(in_dim: usize, out_dim: usize, vs: VarBuilder) -> Result<Linear> {
+ let ws = vs.get_or_init((out_dim, in_dim), "weight", candle_nn::init::ZERO)?;
+ let bs = vs.get_or_init(out_dim, "bias", candle_nn::init::ZERO)?;
Ok(Linear::new(ws, Some(bs)))
}
trait Model: Sized {
- fn new(vs: VarStore) -> Result<Self>;
+ fn new(vs: VarBuilder) -> Result<Self>;
fn forward(&self, xs: &Tensor) -> Result<Tensor>;
}
@@ -134,7 +26,7 @@ struct LinearModel {
}
impl Model for LinearModel {
- fn new(vs: VarStore) -> Result<Self> {
+ fn new(vs: VarBuilder) -> Result<Self> {
let linear = linear_z(IMAGE_DIM, LABELS, vs)?;
Ok(Self { linear })
}
@@ -150,9 +42,9 @@ struct Mlp {
}
impl Model for Mlp {
- fn new(vs: VarStore) -> Result<Self> {
- let ln1 = linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
- let ln2 = linear(100, LABELS, vs.pp("ln2"))?;
+ fn new(vs: VarBuilder) -> Result<Self> {
+ let ln1 = candle_nn::linear(IMAGE_DIM, 100, vs.pp("ln1"))?;
+ let ln2 = candle_nn::linear(100, LABELS, vs.pp("ln2"))?;
Ok(Self { ln1, ln2 })
}
@@ -180,17 +72,16 @@ fn training_loop<M: Model>(
let train_images = m.train_images.to_device(&dev)?;
let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?;
- let mut vs = VarStore::new(DType::F32, dev.clone());
+ let mut varmap = VarMap::new();
+ let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev);
let model = M::new(vs.clone())?;
if let Some(load) = &args.load {
println!("loading weights from {load}");
- vs.load(load)?
+ varmap.load(load)?
}
- let all_vars = vs.all_vars();
- let all_vars = all_vars.iter().collect::<Vec<_>>();
- let sgd = candle_nn::SGD::new(&all_vars, args.learning_rate);
+ let sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate);
let test_images = m.test_images.to_device(&dev)?;
let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?;
for epoch in 1..args.epochs {
@@ -215,7 +106,7 @@ fn training_loop<M: Model>(
}
if let Some(save) = &args.save {
println!("saving trained weights in {save}");
- vs.save(save)?
+ varmap.save(save)?
}
Ok(())
}