summaryrefslogtreecommitdiff
path: root/candle-examples/examples/moondream/main.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/moondream/main.rs')
-rw-r--r--candle-examples/examples/moondream/main.rs245
1 files changed, 245 insertions, 0 deletions
diff --git a/candle-examples/examples/moondream/main.rs b/candle-examples/examples/moondream/main.rs
new file mode 100644
index 00000000..7ea6570f
--- /dev/null
+++ b/candle-examples/examples/moondream/main.rs
@@ -0,0 +1,245 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle::{DType, Device, Tensor};
+use candle_nn::VarBuilder;
+use candle_transformers::{generation::LogitsProcessor, models::moondream};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: moondream::Model,
+ device: Device,
+ tokenizer: Tokenizer,
+ logits_processor: LogitsProcessor,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ verbose_prompt: bool,
+}
+
+impl TextGeneration {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ model: moondream::Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ repeat_penalty: f32,
+ repeat_last_n: usize,
+ verbose_prompt: bool,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer,
+ logits_processor,
+ repeat_penalty,
+ repeat_last_n,
+ verbose_prompt,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, image_embeds: &Tensor, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ println!("starting the inference loop");
+ let tokens = self.tokenizer.encode(prompt, true).map_err(E::msg)?;
+ if tokens.is_empty() {
+ anyhow::bail!("Empty prompts are not supported in the Moondream model.")
+ }
+ if self.verbose_prompt {
+ for (token, id) in tokens.get_tokens().iter().zip(tokens.get_ids().iter()) {
+ let token = token.replace('▁', " ").replace("<0x0A>", "\n");
+ println!("{id:7} -> '{token}'");
+ }
+ }
+
+ let mut tokens = tokens.get_ids().to_vec();
+ let mut generated_tokens = 0usize;
+
+ let eos_token = match self.tokenizer.get_vocab(true).get("END") {
+ Some(token) => *token,
+ None => anyhow::bail!("cannot find the EOS token"),
+ };
+
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = if index > 0 {
+ self.model.text_model.forward(&input)?
+ } else {
+ self.model
+ .text_model
+ .forward_with_img(&input, &image_embeds)?
+ };
+ let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
+ let logits = if self.repeat_penalty == 1. {
+ logits
+ } else {
+ let start_at = tokens.len().saturating_sub(self.repeat_last_n);
+ candle_transformers::utils::apply_repeat_penalty(
+ &logits,
+ self.repeat_penalty,
+ &tokens[start_at..],
+ )?
+ };
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ generated_tokens += 1;
+ if next_token == eos_token {
+ break;
+ }
+ let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
+ print!("{token}");
+ std::io::stdout().flush()?;
+ }
+
+ let dt = start_gen.elapsed();
+ println!(
+ "\n{generated_tokens} tokens generated ({:.2} token/s)",
+ generated_tokens as f64 / dt.as_secs_f64()
+ );
+
+ Ok(())
+ }
+}
+
+#[derive(Parser)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ /// Enable tracing (generates a trace-timestamp.json file).
+ #[arg(long)]
+ tracing: bool,
+
+ /// Display the token for the specified prompt.
+ #[arg(long)]
+ verbose_prompt: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ #[arg(long)]
+ image: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ #[arg(long, default_value_t = 5000)]
+ sample_len: usize,
+
+ /// Penalty to be applied for repeating tokens, 1. means no penalty.
+ #[arg(long, default_value_t = 1.0)]
+ repeat_penalty: f32,
+
+ /// The context size to consider for the repeat penalty.
+ #[arg(long, default_value_t = 64)]
+ repeat_last_n: usize,
+}
+
+/// Loads an image from disk using the image crate, this returns a tensor with shape
+/// (3, 378, 378).
+pub fn load_image<P: AsRef<std::path::Path>>(p: P) -> candle::Result<Tensor> {
+ let img = image::io::Reader::open(p)?
+ .decode()
+ .map_err(candle::Error::wrap)?
+ .resize_to_fill(378, 378, image::imageops::FilterType::Triangle); // Adjusted to 378x378
+ let img = img.to_rgb8();
+ let data = img.into_raw();
+ let data = Tensor::from_vec(data, (378, 378, 3), &Device::Cpu)?.permute((2, 0, 1))?;
+ let mean = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
+ let std = Tensor::new(&[0.5f32, 0.5, 0.5], &Device::Cpu)?.reshape((3, 1, 1))?;
+ (data.to_dtype(candle::DType::F32)? / 255.)?
+ .broadcast_sub(&mean)?
+ .broadcast_div(&std)
+}
+
+#[tokio::main]
+async fn main() -> anyhow::Result<()> {
+ use tracing_chrome::ChromeLayerBuilder;
+ use tracing_subscriber::prelude::*;
+
+ let args = Args::parse();
+
+ let _guard = if args.tracing {
+ let (chrome_layer, guard) = ChromeLayerBuilder::new().build();
+ tracing_subscriber::registry().with(chrome_layer).init();
+ Some(guard)
+ } else {
+ None
+ };
+ println!(
+ "avx: {}, neon: {}, simd128: {}, f16c: {}",
+ candle::utils::with_avx(),
+ candle::utils::with_neon(),
+ candle::utils::with_simd128(),
+ candle::utils::with_f16c()
+ );
+ println!(
+ "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}",
+ args.temperature.unwrap_or(0.),
+ args.repeat_penalty,
+ args.repeat_last_n
+ );
+
+ let start = std::time::Instant::now();
+ let api = hf_hub::api::tokio::Api::new()?;
+ let repo = api.model("vikhyatk/moondream2".to_string());
+ let model_file = repo.get("model.safetensors").await?;
+ let tokenizer = repo.get("tokenizer.json").await?;
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?;
+
+ let start = std::time::Instant::now();
+ let device = candle_examples::device(args.cpu)?;
+ let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? };
+ let config = moondream::Config::v2();
+ let model = moondream::Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let start = std::time::Instant::now();
+ let image = load_image(args.image)?.to_device(&device)?;
+ let image_embeds = image.unsqueeze(0)?;
+ let image_embeds = image_embeds.apply(model.vision_encoder())?;
+ println!(
+ "loaded and encoded the image {image:?} in {:?}",
+ start.elapsed()
+ );
+
+ let prompt = format!("\n\nQuestion: {0}\n\nAnswer:", args.prompt);
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ args.repeat_penalty,
+ args.repeat_last_n,
+ args.verbose_prompt,
+ &device,
+ );
+ pipeline.run(&prompt, &image_embeds, args.sample_len)?;
+
+ Ok(())
+}