summaryrefslogtreecommitdiff
path: root/candle-examples/examples/parler-tts/decode.py
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/parler-tts/decode.py')
-rw-r--r--candle-examples/examples/parler-tts/decode.py29
1 files changed, 29 insertions, 0 deletions
diff --git a/candle-examples/examples/parler-tts/decode.py b/candle-examples/examples/parler-tts/decode.py
new file mode 100644
index 00000000..b79ebda1
--- /dev/null
+++ b/candle-examples/examples/parler-tts/decode.py
@@ -0,0 +1,29 @@
+import torch
+import torchaudio
+from safetensors.torch import load_file
+from parler_tts import DACModel
+
+tensors = load_file("out.safetensors")
+dac_model = DACModel.from_pretrained("parler-tts/dac_44khZ_8kbps")
+output_ids = tensors["codes"][None, None]
+print(output_ids, "\n", output_ids.shape)
+batch_size = 1
+with torch.no_grad():
+ output_values = []
+ for sample_id in range(batch_size):
+ sample = output_ids[:, sample_id]
+ sample_mask = (sample >= dac_model.config.codebook_size).sum(dim=(0, 1)) == 0
+ if sample_mask.sum() > 0:
+ sample = sample[:, :, sample_mask]
+ sample = dac_model.decode(sample[None, ...], [None]).audio_values
+ output_values.append(sample.transpose(0, 2))
+ else:
+ output_values.append(torch.zeros((1, 1, 1)).to(dac_model.device))
+ output_lengths = [audio.shape[0] for audio in output_values]
+ pcm = (
+ torch.nn.utils.rnn.pad_sequence(output_values, batch_first=True, padding_value=0)
+ .squeeze(-1)
+ .squeeze(-1)
+ )
+print(pcm.shape, pcm.dtype)
+torchaudio.save("out.wav", pcm.cpu(), sample_rate=44100)