summaryrefslogtreecommitdiff
path: root/candle-examples/examples/phi/main.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/phi/main.rs')
-rw-r--r--candle-examples/examples/phi/main.rs163
1 files changed, 163 insertions, 0 deletions
diff --git a/candle-examples/examples/phi/main.rs b/candle-examples/examples/phi/main.rs
new file mode 100644
index 00000000..4b290cd8
--- /dev/null
+++ b/candle-examples/examples/phi/main.rs
@@ -0,0 +1,163 @@
+#[cfg(feature = "mkl")]
+extern crate intel_mkl_src;
+
+#[cfg(feature = "accelerate")]
+extern crate accelerate_src;
+
+use anyhow::{Error as E, Result};
+use clap::Parser;
+
+use candle_transformers::models::mixformer::{Config, MixFormerSequentialForCausalLM as Model};
+
+use candle::{DType, Device, Tensor};
+use candle_nn::VarBuilder;
+use candle_transformers::generation::LogitsProcessor;
+use hf_hub::{api::sync::Api, Repo, RepoType};
+use tokenizers::Tokenizer;
+
+struct TextGeneration {
+ model: Model,
+ device: Device,
+ tokenizer: Tokenizer,
+ logits_processor: LogitsProcessor,
+}
+
+impl TextGeneration {
+ fn new(
+ model: Model,
+ tokenizer: Tokenizer,
+ seed: u64,
+ temp: Option<f64>,
+ top_p: Option<f64>,
+ device: &Device,
+ ) -> Self {
+ let logits_processor = LogitsProcessor::new(seed, temp, top_p);
+ Self {
+ model,
+ tokenizer,
+ logits_processor,
+ device: device.clone(),
+ }
+ }
+
+ fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> {
+ use std::io::Write;
+ println!("starting the inference loop");
+ print!("{prompt}");
+ std::io::stdout().flush()?;
+ let mut tokens = self
+ .tokenizer
+ .encode(prompt, true)
+ .map_err(E::msg)?
+ .get_ids()
+ .to_vec();
+
+ let mut new_tokens = vec![];
+ let start_gen = std::time::Instant::now();
+ for index in 0..sample_len {
+ let context_size = if index > 0 { 1 } else { tokens.len() };
+ let ctxt = &tokens[tokens.len().saturating_sub(context_size)..];
+ let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?;
+ let logits = self.model.forward(&input)?;
+ let logits = logits.squeeze(0)?.to_dtype(DType::F32)?;
+
+ let next_token = self.logits_processor.sample(&logits)?;
+ tokens.push(next_token);
+ new_tokens.push(next_token);
+ let token = self.tokenizer.decode(&[next_token], true).map_err(E::msg)?;
+ print!("{token}");
+ std::io::stdout().flush()?;
+ }
+ let dt = start_gen.elapsed();
+ println!(
+ "{sample_len} tokens generated ({:.3} token/s)",
+ sample_len as f64 / dt.as_secs_f64(),
+ );
+ Ok(())
+ }
+}
+
+#[derive(Parser, Debug)]
+#[command(author, version, about, long_about = None)]
+struct Args {
+ /// Run on CPU rather than on GPU.
+ #[arg(long)]
+ cpu: bool,
+
+ #[arg(long)]
+ prompt: String,
+
+ /// The temperature used to generate samples.
+ #[arg(long)]
+ temperature: Option<f64>,
+
+ /// Nucleus sampling probability cutoff.
+ #[arg(long)]
+ top_p: Option<f64>,
+
+ /// The seed to use when generating random samples.
+ #[arg(long, default_value_t = 299792458)]
+ seed: u64,
+
+ /// The length of the sample to generate (in tokens).
+ #[arg(long, default_value_t = 100)]
+ sample_len: usize,
+
+ #[arg(long, default_value = "microsoft/phi-1_5")]
+ model_id: String,
+
+ #[arg(long, default_value = "refs/pr/18")]
+ revision: String,
+
+ #[arg(long)]
+ weight_file: Option<String>,
+}
+
+fn main() -> Result<()> {
+ let args = Args::parse();
+
+ let start = std::time::Instant::now();
+ let api = Api::new()?;
+ let repo = api.repo(Repo::with_revision(
+ args.model_id,
+ RepoType::Model,
+ args.revision,
+ ));
+ let tokenizer_filename = repo.get("tokenizer.json")?;
+ let filenames = match args.weight_file {
+ Some(weight_file) => vec![std::path::PathBuf::from(weight_file)],
+ None => ["model.safetensors"]
+ .iter()
+ .map(|f| repo.get(f))
+ .collect::<std::result::Result<Vec<_>, _>>()?,
+ };
+ println!("retrieved the files in {:?}", start.elapsed());
+ let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?;
+
+ let weights = filenames
+ .iter()
+ .map(|f| Ok(unsafe { candle::safetensors::MmapedFile::new(f)? }))
+ .collect::<Result<Vec<_>>>()?;
+ let weights = weights
+ .iter()
+ .map(|f| Ok(f.deserialize()?))
+ .collect::<Result<Vec<_>>>()?;
+
+ let start = std::time::Instant::now();
+ let device = candle_examples::device(args.cpu)?;
+ let vb = VarBuilder::from_safetensors(weights, DType::F32, &device);
+ let config = Config::v1_5();
+ let model = Model::new(&config, vb)?;
+ println!("loaded the model in {:?}", start.elapsed());
+
+ let mut pipeline = TextGeneration::new(
+ model,
+ tokenizer,
+ args.seed,
+ args.temperature,
+ args.top_p,
+ &device,
+ );
+ pipeline.run(&args.prompt, args.sample_len)?;
+ Ok(())
+}