summaryrefslogtreecommitdiff
path: root/candle-examples/examples/quantized/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/quantized/model.rs')
-rw-r--r--candle-examples/examples/quantized/model.rs371
1 files changed, 0 insertions, 371 deletions
diff --git a/candle-examples/examples/quantized/model.rs b/candle-examples/examples/quantized/model.rs
deleted file mode 100644
index da0bd0b0..00000000
--- a/candle-examples/examples/quantized/model.rs
+++ /dev/null
@@ -1,371 +0,0 @@
-use std::collections::HashMap;
-
-use candle::quantized::QTensor;
-use candle::quantized::{ggml_file, gguf_file};
-use candle::{DType, Device, IndexOp, Result, Tensor, D};
-use candle_nn::{Embedding, Module};
-
-pub const MAX_SEQ_LEN: usize = 4096;
-
-struct RmsNorm {
- inner: candle_nn::LayerNorm,
- span: tracing::Span,
-}
-
-impl RmsNorm {
- fn new(scale: QTensor, eps: f32) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
- let scale = scale.dequantize(&Device::Cpu)?;
- let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64);
- Ok(Self { inner, span })
- }
-
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-// QMatMul wrapper adding some tracing.
-struct QMatMul {
- inner: candle::quantized::QMatMul,
- span: tracing::Span,
-}
-
-impl QMatMul {
- fn from_qtensor(qtensor: QTensor) -> Self {
- let inner = candle::quantized::QMatMul::from_qtensor(qtensor);
- let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
- Self { inner, span }
- }
-
- fn forward(&self, xs: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(xs)
- }
-}
-
-struct LayerWeights {
- attention_wq: QMatMul,
- attention_wk: QMatMul,
- attention_wv: QMatMul,
- attention_wo: QMatMul,
- attention_norm: RmsNorm,
- feed_forward_w1: QMatMul,
- feed_forward_w2: QMatMul,
- feed_forward_w3: QMatMul,
- ffn_norm: RmsNorm,
- n_head: usize,
- n_kv_head: usize,
- head_dim: usize,
- cos: Tensor,
- sin: Tensor,
- kv_cache: Option<(Tensor, Tensor)>,
- span_attn: tracing::Span,
- span_rot: tracing::Span,
- span_mlp: tracing::Span,
-}
-
-fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
- let shape = mask.shape();
- let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
- let m = mask.where_cond(&on_true, on_false)?;
- Ok(m)
-}
-
-impl LayerWeights {
- fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let _enter = self.span_rot.enter();
- let (b_sz, n_head, seq_len, n_embd) = x.dims4()?;
- let cos = self
- .cos
- .narrow(0, index_pos, seq_len)?
- .reshape((seq_len, n_embd / 2, 1))?;
- let sin = self
- .sin
- .narrow(0, index_pos, seq_len)?
- .reshape((seq_len, n_embd / 2, 1))?;
- let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
- let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
- // This mimics the llama.cpp behavior.
- // https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105
- // The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension.
- // The resulting y0 and y1 are also interleaved with:
- // y0 = x0*cos - x1*sin
- // y1 = x0*sin + x1*cos
- let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?;
- let x0 = x.narrow(D::Minus1, 0, 1)?;
- let x1 = x.narrow(D::Minus1, 1, 1)?;
- let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
- let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
- let rope = Tensor::cat(&[y0, y1], D::Minus1)?;
- let rope = rope.flatten_from(D::Minus2)?;
- Ok(rope)
- }
-
- fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
- let _enter = self.span_attn.enter();
- let (b_sz, seq_len, n_embd) = x.dims3()?;
- let q = self.attention_wq.forward(x)?;
- let k = self.attention_wk.forward(x)?;
- let v = self.attention_wv.forward(x)?;
-
- let q = q
- .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
- .transpose(1, 2)?;
- let k = k
- .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
- .transpose(1, 2)?;
- let v = v
- .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
- .transpose(1, 2)?;
-
- let q = self.apply_rotary_emb(&q, index_pos)?;
- let k = self.apply_rotary_emb(&k, index_pos)?;
-
- let (k, v) = match &self.kv_cache {
- None => (k, v),
- Some((k_cache, v_cache)) => {
- if index_pos == 0 {
- (k, v)
- } else {
- let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
- let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
- (k, v)
- }
- }
- };
- self.kv_cache = Some((k.clone(), v.clone()));
-
- // Support for MQA, useful for 70B models.
- let k = self.repeat_kv(k)?;
- let v = self.repeat_kv(v)?;
-
- let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
- let mask = mask.broadcast_as(att.shape())?;
- let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
- let att = candle_nn::ops::softmax(&att, D::Minus1)?;
- // Convert to contiguous as matmul doesn't support strided vs for now.
- let y = att.matmul(&v.contiguous()?)?;
- let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
- let y = self.attention_wo.forward(&y)?;
- Ok(y)
- }
-
- fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
- let n_rep = self.n_head / self.n_kv_head;
- if n_rep == 1 {
- Ok(x)
- } else {
- let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
- let x = x
- .unsqueeze(2)?
- .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
- .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
- Ok(x)
- }
- }
-}
-
-pub struct ModelWeights {
- tok_embeddings: Embedding,
- layers: Vec<LayerWeights>,
- norm: RmsNorm,
- output: QMatMul,
- masks: HashMap<usize, Tensor>,
- span: tracing::Span,
- span_output: tracing::Span,
-}
-
-fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> {
- let theta: Vec<_> = (0..head_dim)
- .step_by(2)
- .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
- .collect();
- let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
- let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
- .to_dtype(DType::F32)?
- .reshape((MAX_SEQ_LEN, 1))?
- .matmul(&theta.reshape((1, theta.elem_count()))?)?;
- let cos = idx_theta.cos()?;
- let sin = idx_theta.sin()?;
- Ok((cos, sin))
-}
-
-impl ModelWeights {
- pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
- let cpu = &Device::Cpu;
- let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
- let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?;
- let tok_embeddings = ct.remove("tok_embeddings.weight")?;
- let tok_embeddings = tok_embeddings.dequantize(cpu)?;
- let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?;
- let output = ct.remove("output.weight")?;
- let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
- for layer_idx in 0..ct.hparams.n_layer {
- let prefix = format!("layers.{layer_idx}");
- let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?;
- let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
- let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
- let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
- let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
- let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
- let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
- let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
- let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
- let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
- let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
- let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
- layers.push(LayerWeights {
- attention_wq: QMatMul::from_qtensor(attention_wq),
- attention_wk: QMatMul::from_qtensor(attention_wk),
- attention_wv: QMatMul::from_qtensor(attention_wv),
- attention_wo: QMatMul::from_qtensor(attention_wo),
- attention_norm: RmsNorm::new(attention_norm, 1e-5)?,
- feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
- feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
- feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
- ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?,
- n_head: ct.hparams.n_head as usize,
- n_kv_head: ct.hparams.n_head as usize / gqa,
- head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
- cos: cos.clone(),
- sin: sin.clone(),
- kv_cache: None,
- span_attn,
- span_rot,
- span_mlp,
- })
- }
- let span = tracing::span!(tracing::Level::TRACE, "model");
- let span_output = tracing::span!(tracing::Level::TRACE, "output");
- Ok(Self {
- tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
- layers,
- norm,
- output: QMatMul::from_qtensor(output),
- masks: HashMap::new(),
- span,
- span_output,
- })
- }
-
- pub fn from_gguf<R: std::io::Seek + std::io::Read>(
- ct: gguf_file::Content,
- reader: &mut R,
- ) -> Result<Self> {
- let cpu = &Device::Cpu;
- let md_get = |s: &str| match ct.metadata.get(s) {
- None => candle::bail!("cannot find {s} in metadata"),
- Some(v) => Ok(v),
- };
-
- // Parameter extraction from metadata.
- let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
- let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
- let block_count = md_get("llama.block_count")?.to_u32()? as usize;
- let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
- let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
- // Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
- let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?;
-
- let rope_freq_base = md_get("llama.rope.freq_base")
- .and_then(|m| m.to_f32())
- .unwrap_or(10000f32);
- let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?;
-
- let tok_embeddings = ct.tensor(reader, "token_embd.weight")?;
- let tok_embeddings = tok_embeddings.dequantize(cpu)?;
- let norm = RmsNorm::new(ct.tensor(reader, "output_norm.weight")?, rms_norm_eps)?;
- let output = ct.tensor(reader, "output.weight")?;
- let mut layers = Vec::with_capacity(block_count);
- for layer_idx in 0..block_count {
- let prefix = format!("blk.{layer_idx}");
- let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"))?;
- let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"))?;
- let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"))?;
- let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"))?;
- let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"))?;
- let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"))?;
- let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"))?;
- let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"))?;
- let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"))?;
- let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
- let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
- let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
- layers.push(LayerWeights {
- attention_wq: QMatMul::from_qtensor(attention_wq),
- attention_wk: QMatMul::from_qtensor(attention_wk),
- attention_wv: QMatMul::from_qtensor(attention_wv),
- attention_wo: QMatMul::from_qtensor(attention_wo),
- attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?,
- feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
- feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
- feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
- ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?,
- n_head: head_count,
- n_kv_head: head_count_kv,
- head_dim: embedding_length / head_count,
- cos: cos.clone(),
- sin: sin.clone(),
- kv_cache: None,
- span_attn,
- span_rot,
- span_mlp,
- })
- }
- let span = tracing::span!(tracing::Level::TRACE, "model");
- let span_output = tracing::span!(tracing::Level::TRACE, "output");
- Ok(Self {
- tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
- layers,
- norm,
- output: QMatMul::from_qtensor(output),
- masks: HashMap::new(),
- span,
- span_output,
- })
- }
-
- fn mask(&mut self, t: usize) -> Result<Tensor> {
- if let Some(mask) = self.masks.get(&t) {
- Ok(mask.clone())
- } else {
- let mask: Vec<_> = (0..t)
- .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
- .collect();
- let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
- self.masks.insert(t, mask.clone());
- Ok(mask)
- }
- }
-
- pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
- let (_b_sz, seq_len) = x.dims2()?;
- let mask = self.mask(seq_len)?;
- let _enter = self.span.enter();
- let mut layer_in = self.tok_embeddings.forward(x)?;
- for layer in self.layers.iter_mut() {
- let x = layer_in;
- let residual = &x;
- let x = layer.attention_norm.forward(&x)?;
- let attn = layer.forward_attn(&x, &mask, index_pos)?;
- let x = (attn + residual)?;
-
- // MLP
- let _enter = layer.span_mlp.enter();
- let residual = &x;
- let x = layer.ffn_norm.forward(&x)?;
- let w1 = layer.feed_forward_w1.forward(&x)?;
- let w3 = layer.feed_forward_w3.forward(&x)?;
- let mlp = layer
- .feed_forward_w2
- .forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
- layer_in = (mlp + residual)?;
- }
- let x = self.norm.forward(&layer_in)?;
- let x = x.i((.., seq_len - 1, ..))?;
- let _enter = self.span_output.enter();
- self.output.forward(&x)
- }
-}