summaryrefslogtreecommitdiff
path: root/candle-examples/examples/quantized/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/quantized/model.rs')
-rw-r--r--candle-examples/examples/quantized/model.rs367
1 files changed, 367 insertions, 0 deletions
diff --git a/candle-examples/examples/quantized/model.rs b/candle-examples/examples/quantized/model.rs
new file mode 100644
index 00000000..27ac18a9
--- /dev/null
+++ b/candle-examples/examples/quantized/model.rs
@@ -0,0 +1,367 @@
+use std::collections::HashMap;
+
+use candle::quantized::QTensor;
+use candle::quantized::{ggml_file, gguf_file};
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, Module};
+
+const MAX_SEQ_LEN: usize = 4096;
+
+struct RmsNorm {
+ inner: candle_nn::LayerNorm,
+ span: tracing::Span,
+}
+
+impl RmsNorm {
+ fn new(scale: QTensor, eps: f32) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
+ let scale = scale.dequantize(&Device::Cpu)?;
+ let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64);
+ Ok(Self { inner, span })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+// QMatMul wrapper adding some tracing.
+struct QMatMul {
+ inner: candle::quantized::QMatMul,
+ span: tracing::Span,
+}
+
+impl QMatMul {
+ fn from_qtensor(qtensor: QTensor) -> Self {
+ let inner = candle::quantized::QMatMul::from_qtensor(qtensor);
+ let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
+ Self { inner, span }
+ }
+
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(xs)
+ }
+}
+
+struct LayerWeights {
+ attention_wq: QMatMul,
+ attention_wk: QMatMul,
+ attention_wv: QMatMul,
+ attention_wo: QMatMul,
+ attention_norm: RmsNorm,
+ feed_forward_w1: QMatMul,
+ feed_forward_w2: QMatMul,
+ feed_forward_w3: QMatMul,
+ ffn_norm: RmsNorm,
+ n_head: usize,
+ n_kv_head: usize,
+ head_dim: usize,
+ cos: Tensor,
+ sin: Tensor,
+ kv_cache: Option<(Tensor, Tensor)>,
+ span_attn: tracing::Span,
+ span_rot: tracing::Span,
+ span_mlp: tracing::Span,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+impl LayerWeights {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (b_sz, n_head, seq_len, n_embd) = x.dims4()?;
+ let cos = self
+ .cos
+ .narrow(0, index_pos, seq_len)?
+ .reshape((seq_len, n_embd / 2, 1))?;
+ let sin = self
+ .sin
+ .narrow(0, index_pos, seq_len)?
+ .reshape((seq_len, n_embd / 2, 1))?;
+ let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
+ let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
+ // This mimics the llama.cpp behavior.
+ // https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105
+ // The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension.
+ // The resulting y0 and y1 are also interleaved with:
+ // y0 = x0*cos - x1*sin
+ // y1 = x0*sin + x1*cos
+ let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?;
+ let x0 = x.narrow(D::Minus1, 0, 1)?;
+ let x1 = x.narrow(D::Minus1, 1, 1)?;
+ let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
+ let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
+ let rope = Tensor::cat(&[y0, y1], D::Minus1)?;
+ let rope = rope.flatten_from(D::Minus2)?;
+ Ok(rope)
+ }
+
+ fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_attn.enter();
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let q = self.attention_wq.forward(x)?;
+ let k = self.attention_wk.forward(x)?;
+ let v = self.attention_wv.forward(x)?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let k = k
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let v = v
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let k = self.apply_rotary_emb(&k, index_pos)?;
+
+ let (k, v) = match &self.kv_cache {
+ None => (k, v),
+ Some((k_cache, v_cache)) => {
+ let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
+ let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+
+ // Support for MQA, useful for 70B models.
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = mask.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.attention_wo.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.n_head / self.n_kv_head;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(2)?
+ .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
+ Ok(x)
+ }
+ }
+}
+
+pub struct ModelWeights {
+ tok_embeddings: Embedding,
+ layers: Vec<LayerWeights>,
+ norm: RmsNorm,
+ output: QMatMul,
+ masks: HashMap<usize, Tensor>,
+ span: tracing::Span,
+ span_output: tracing::Span,
+}
+
+fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> {
+ let theta: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let cos = idx_theta.cos()?;
+ let sin = idx_theta.sin()?;
+ Ok((cos, sin))
+}
+
+impl ModelWeights {
+ pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
+ let cpu = &Device::Cpu;
+ let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
+ let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?;
+ let tok_embeddings = ct.remove("tok_embeddings.weight")?;
+ let tok_embeddings = tok_embeddings.dequantize(cpu)?;
+ let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?;
+ let output = ct.remove("output.weight")?;
+ let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
+ for layer_idx in 0..ct.hparams.n_layer {
+ let prefix = format!("layers.{layer_idx}");
+ let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?;
+ let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
+ let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
+ let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
+ let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
+ let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
+ let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
+ let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
+ let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
+ layers.push(LayerWeights {
+ attention_wq: QMatMul::from_qtensor(attention_wq),
+ attention_wk: QMatMul::from_qtensor(attention_wk),
+ attention_wv: QMatMul::from_qtensor(attention_wv),
+ attention_wo: QMatMul::from_qtensor(attention_wo),
+ attention_norm: RmsNorm::new(attention_norm, 1e-5)?,
+ feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
+ feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
+ feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
+ ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?,
+ n_head: ct.hparams.n_head as usize,
+ n_kv_head: ct.hparams.n_head as usize / gqa,
+ head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ span_mlp,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
+ layers,
+ norm,
+ output: QMatMul::from_qtensor(output),
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ pub fn from_gguf<R: std::io::Seek + std::io::Read>(
+ ct: gguf_file::Content,
+ reader: &mut R,
+ ) -> Result<Self> {
+ let cpu = &Device::Cpu;
+ let md_get = |s: &str| match ct.metadata.get(s) {
+ None => candle::bail!("cannot find {s} in metadata"),
+ Some(v) => Ok(v),
+ };
+
+ // Parameter extraction from metadata.
+ let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
+ let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
+ let block_count = md_get("llama.block_count")?.to_u32()? as usize;
+ let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
+ let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
+ // Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
+ let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?;
+
+ let rope_freq_base = md_get("llama.rope.freq_base")
+ .and_then(|m| m.to_f32())
+ .unwrap_or(10000f32);
+ let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?;
+
+ let tok_embeddings = ct.tensor(reader, "token_embd.weight")?;
+ let tok_embeddings = tok_embeddings.dequantize(cpu)?;
+ let norm = RmsNorm::new(ct.tensor(reader, "output_norm.weight")?, rms_norm_eps)?;
+ let output = ct.tensor(reader, "output.weight")?;
+ let mut layers = Vec::with_capacity(block_count);
+ for layer_idx in 0..block_count {
+ let prefix = format!("blk.{layer_idx}");
+ let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"))?;
+ let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"))?;
+ let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"))?;
+ let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"))?;
+ let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"))?;
+ let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"))?;
+ let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"))?;
+ let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"))?;
+ let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"))?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
+ layers.push(LayerWeights {
+ attention_wq: QMatMul::from_qtensor(attention_wq),
+ attention_wk: QMatMul::from_qtensor(attention_wk),
+ attention_wv: QMatMul::from_qtensor(attention_wv),
+ attention_wo: QMatMul::from_qtensor(attention_wo),
+ attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?,
+ feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
+ feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
+ feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
+ ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?,
+ n_head: head_count,
+ n_kv_head: head_count_kv,
+ head_dim: embedding_length / head_count,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ span_mlp,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
+ layers,
+ norm,
+ output: QMatMul::from_qtensor(output),
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ fn mask(&mut self, t: usize) -> Result<Tensor> {
+ if let Some(mask) = self.masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
+ self.masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+
+ pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mask = self.mask(seq_len)?;
+ let _enter = self.span.enter();
+ let mut layer_in = self.tok_embeddings.forward(x)?;
+ for layer in self.layers.iter_mut() {
+ let x = layer_in;
+ let residual = &x;
+ let x = layer.attention_norm.forward(&x)?;
+ let attn = layer.forward_attn(&x, &mask, index_pos)?;
+ let x = (attn + residual)?;
+
+ // MLP
+ let _enter = layer.span_mlp.enter();
+ let residual = &x;
+ let x = layer.ffn_norm.forward(&x)?;
+ let w1 = layer.feed_forward_w1.forward(&x)?;
+ let w3 = layer.feed_forward_w3.forward(&x)?;
+ let mlp = layer
+ .feed_forward_w2
+ .forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
+ layer_in = (mlp + residual)?;
+ }
+ let x = self.norm.forward(&layer_in)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let _enter = self.span_output.enter();
+ self.output.forward(&x)
+ }
+}