diff options
Diffstat (limited to 'candle-examples/examples/segment-anything/model_prompt_encoder.rs')
-rw-r--r-- | candle-examples/examples/segment-anything/model_prompt_encoder.rs | 192 |
1 files changed, 192 insertions, 0 deletions
diff --git a/candle-examples/examples/segment-anything/model_prompt_encoder.rs b/candle-examples/examples/segment-anything/model_prompt_encoder.rs new file mode 100644 index 00000000..7ac4c66d --- /dev/null +++ b/candle-examples/examples/segment-anything/model_prompt_encoder.rs @@ -0,0 +1,192 @@ +use candle::{DType, IndexOp, Result, Tensor, D}; +use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder}; + +#[derive(Debug)] +struct PostionEmbeddingRandom { + positional_encoding_gaussian_matrix: Tensor, +} + +impl PostionEmbeddingRandom { + fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> { + let positional_encoding_gaussian_matrix = + vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?; + Ok(Self { + positional_encoding_gaussian_matrix, + }) + } + + fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> { + let coords = coords.affine(2., -1.)?; + let coords = coords.matmul(&self.positional_encoding_gaussian_matrix)?; + let coords = (coords * (2. * std::f64::consts::PI))?; + Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1) + } + + fn forward(&self, h: usize, w: usize) -> Result<Tensor> { + let device = self.positional_encoding_gaussian_matrix.device(); + let grid = Tensor::ones((h, w), DType::F32, device)?; + // TODO: cumsum + let x_embed = (&grid - 0.5)?; + // TODO: cumsum + let y_embed = (&grid - 0.5)?; + let x_embed = (x_embed / w as f64)?; + let y_embed = (y_embed / h as f64)?; + let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?; + self.pe_encoding(&coords)?.permute((2, 0, 1)) + } + + fn forward_with_coords( + &self, + coords_input: &Tensor, + image_size: (usize, usize), + ) -> Result<Tensor> { + let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?; + let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?; + let c = coords_input.dim(D::Minus1)?; + let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?; + let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?; + self.pe_encoding(&coords) + } +} + +#[derive(Debug)] +pub struct PromptEncoder { + pe_layer: PostionEmbeddingRandom, + point_embeddings: Vec<candle_nn::Embedding>, + not_a_point_embed: candle_nn::Embedding, + mask_downscaling_conv1: candle_nn::Conv2d, + mask_downscaling_ln1: LayerNorm, + mask_downscaling_conv2: candle_nn::Conv2d, + mask_downscaling_ln2: LayerNorm, + mask_downscaling_conv3: candle_nn::Conv2d, + no_mask_embed: candle_nn::Embedding, + image_embedding_size: (usize, usize), + input_image_size: (usize, usize), +} + +impl PromptEncoder { + pub fn new( + embed_dim: usize, + image_embedding_size: (usize, usize), + input_image_size: (usize, usize), + mask_in_chans: usize, + vb: VarBuilder, + ) -> Result<Self> { + let num_points_embeddings = 4; + let pe_layer = PostionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?; + let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?; + let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?; + let cfg = candle_nn::Conv2dConfig { + stride: 2, + ..Default::default() + }; + let mask_downscaling_conv1 = + candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?; + let mask_downscaling_conv2 = candle_nn::conv2d( + mask_in_chans / 4, + mask_in_chans, + 2, + cfg, + vb.pp("mask_downscaling.3"), + )?; + let mask_downscaling_conv3 = candle_nn::conv2d( + mask_in_chans, + embed_dim, + 1, + Default::default(), + vb.pp("mask_downscaling.6"), + )?; + let mask_downscaling_ln1 = + layer_norm(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?; + let mask_downscaling_ln2 = layer_norm(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?; + let mut point_embeddings = Vec::with_capacity(num_points_embeddings); + let vb_e = vb.pp("point_embeddings"); + for i in 0..num_points_embeddings { + let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?; + point_embeddings.push(emb) + } + Ok(Self { + pe_layer, + point_embeddings, + not_a_point_embed, + mask_downscaling_conv1, + mask_downscaling_ln1, + mask_downscaling_conv2, + mask_downscaling_ln2, + mask_downscaling_conv3, + no_mask_embed, + image_embedding_size, + input_image_size, + }) + } + + fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> { + masks + .apply(&self.mask_downscaling_conv1)? + .apply(&self.mask_downscaling_ln1)? + .gelu()? + .apply(&self.mask_downscaling_conv2)? + .apply(&self.mask_downscaling_ln2)? + .gelu()? + .apply(&self.mask_downscaling_conv3) + } + + fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> { + let points = (points + 0.5)?; + let points = if pad { todo!() } else { points }; + let point_embedding = self + .pe_layer + .forward_with_coords(&points, self.input_image_size)?; + // TODO: tweak based on labels. + Ok(point_embedding) + } + + fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> { + let boxes = (boxes + 0.5)?; + let coords = boxes.reshape((boxes.elem_count() / 4, 2, 2))?; + let corner_embedding = self + .pe_layer + .forward_with_coords(&coords, self.input_image_size)?; + let ce1 = corner_embedding.i((.., 0))?; + let ce2 = corner_embedding.i((.., 1))?; + let ce1 = (ce1 + self.point_embeddings[2].embeddings())?; + let ce2 = (ce2 + self.point_embeddings[3].embeddings())?; + Tensor::cat(&[&ce1, &ce2], 1) + } + + fn forward( + &self, + points: Option<(&Tensor, &Tensor)>, + boxes: Option<&Tensor>, + masks: Option<&Tensor>, + ) -> Result<(Tensor, Tensor)> { + let se_points = match points { + Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?), + None => None, + }; + let se_boxes = match boxes { + Some(boxes) => Some(self.embed_boxes(boxes)?), + None => None, + }; + let sparse_embeddings = match (se_points, se_boxes) { + (Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?, + (Some(se_points), None) => se_points, + (None, Some(se_boxes)) => se_boxes, + (None, None) => Tensor::zeros(1, DType::F32, &candle::Device::Cpu)?, + }; + + let dense_embeddings = match masks { + None => { + let emb = self.no_mask_embed.embeddings(); + emb.reshape((1, emb.elem_count(), 1, 1))?.expand(( + 1, + 0, + self.image_embedding_size.0, + self.image_embedding_size.1, + ))? + } + Some(masks) => self.embed_masks(masks)?, + }; + Ok((sparse_embeddings, dense_embeddings)) + } +} |