diff options
Diffstat (limited to 'candle-examples/examples/simple-training/main.rs')
-rw-r--r-- | candle-examples/examples/simple-training/main.rs | 22 |
1 files changed, 8 insertions, 14 deletions
diff --git a/candle-examples/examples/simple-training/main.rs b/candle-examples/examples/simple-training/main.rs index ea2dc0cd..2cfe4923 100644 --- a/candle-examples/examples/simple-training/main.rs +++ b/candle-examples/examples/simple-training/main.rs @@ -17,10 +17,11 @@ fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> candle::Result<Tenso Ok(log_sm) } -// TODO: Once the index_select backprop is efficient enough, switch to using this. -fn _nll_loss(inp: &Tensor, target: &Tensor) -> candle::Result<Tensor> { - let b_sz = target.shape().r1()?; - inp.index_select(target, 0)?.sum_all()? / b_sz as f64 +fn nll_loss(inp: &Tensor, target: &Tensor) -> candle::Result<Tensor> { + let b_sz = target.dim(0)?; + inp.gather(target, 1)? + .sum_all()? + .affine(-1f64 / b_sz as f64, 0.) } pub fn main() -> Result<()> { @@ -32,12 +33,7 @@ pub fn main() -> Result<()> { println!("test-labels: {:?}", m.test_labels.shape()); let train_labels = m.train_labels; let train_images = m.train_images; - let train_labels = train_labels.to_vec1::<u8>()?; - let train_label_mask = train_labels - .iter() - .flat_map(|l| (0..LABELS).map(|i| f32::from(i == *l as usize))) - .collect::<Vec<_>>(); - let train_label_mask = Tensor::from_vec(train_label_mask, (train_labels.len(), LABELS), &dev)?; + let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?; let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?; let bs = Var::zeros(LABELS, DType::F32, &dev)?; let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0); @@ -46,9 +42,7 @@ pub fn main() -> Result<()> { for epoch in 1..200 { let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?; let log_sm = log_softmax(&logits, D::Minus1)?; - let loss = (&log_sm * &train_label_mask)? - .sum_all()? - .affine(-1f64 / train_images.dim(0)? as f64, 0f64)?; + let loss = nll_loss(&log_sm, &train_labels)?; sgd.backward_step(&loss)?; let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?; @@ -63,7 +57,7 @@ pub fn main() -> Result<()> { "{epoch:4} train loss: {:8.5} test acc: {:5.2}%", loss.to_scalar::<f32>()?, 100. * test_accuracy - ) + ); } Ok(()) } |