summaryrefslogtreecommitdiff
path: root/candle-examples/examples/simple-training/main.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/simple-training/main.rs')
-rw-r--r--candle-examples/examples/simple-training/main.rs22
1 files changed, 8 insertions, 14 deletions
diff --git a/candle-examples/examples/simple-training/main.rs b/candle-examples/examples/simple-training/main.rs
index ea2dc0cd..2cfe4923 100644
--- a/candle-examples/examples/simple-training/main.rs
+++ b/candle-examples/examples/simple-training/main.rs
@@ -17,10 +17,11 @@ fn log_softmax<D: candle::shape::Dim>(xs: &Tensor, d: D) -> candle::Result<Tenso
Ok(log_sm)
}
-// TODO: Once the index_select backprop is efficient enough, switch to using this.
-fn _nll_loss(inp: &Tensor, target: &Tensor) -> candle::Result<Tensor> {
- let b_sz = target.shape().r1()?;
- inp.index_select(target, 0)?.sum_all()? / b_sz as f64
+fn nll_loss(inp: &Tensor, target: &Tensor) -> candle::Result<Tensor> {
+ let b_sz = target.dim(0)?;
+ inp.gather(target, 1)?
+ .sum_all()?
+ .affine(-1f64 / b_sz as f64, 0.)
}
pub fn main() -> Result<()> {
@@ -32,12 +33,7 @@ pub fn main() -> Result<()> {
println!("test-labels: {:?}", m.test_labels.shape());
let train_labels = m.train_labels;
let train_images = m.train_images;
- let train_labels = train_labels.to_vec1::<u8>()?;
- let train_label_mask = train_labels
- .iter()
- .flat_map(|l| (0..LABELS).map(|i| f32::from(i == *l as usize)))
- .collect::<Vec<_>>();
- let train_label_mask = Tensor::from_vec(train_label_mask, (train_labels.len(), LABELS), &dev)?;
+ let train_labels = train_labels.to_dtype(DType::U32)?.unsqueeze(1)?;
let ws = Var::zeros((IMAGE_DIM, LABELS), DType::F32, &dev)?;
let bs = Var::zeros(LABELS, DType::F32, &dev)?;
let sgd = candle_nn::SGD::new(&[&ws, &bs], 1.0);
@@ -46,9 +42,7 @@ pub fn main() -> Result<()> {
for epoch in 1..200 {
let logits = train_images.matmul(&ws)?.broadcast_add(&bs)?;
let log_sm = log_softmax(&logits, D::Minus1)?;
- let loss = (&log_sm * &train_label_mask)?
- .sum_all()?
- .affine(-1f64 / train_images.dim(0)? as f64, 0f64)?;
+ let loss = nll_loss(&log_sm, &train_labels)?;
sgd.backward_step(&loss)?;
let test_logits = test_images.matmul(&ws)?.broadcast_add(&bs)?;
@@ -63,7 +57,7 @@ pub fn main() -> Result<()> {
"{epoch:4} train loss: {:8.5} test acc: {:5.2}%",
loss.to_scalar::<f32>()?,
100. * test_accuracy
- )
+ );
}
Ok(())
}