diff options
Diffstat (limited to 'candle-examples/examples/stable-diffusion/ddim.rs')
-rw-r--r-- | candle-examples/examples/stable-diffusion/ddim.rs | 181 |
1 files changed, 181 insertions, 0 deletions
diff --git a/candle-examples/examples/stable-diffusion/ddim.rs b/candle-examples/examples/stable-diffusion/ddim.rs new file mode 100644 index 00000000..9afff5aa --- /dev/null +++ b/candle-examples/examples/stable-diffusion/ddim.rs @@ -0,0 +1,181 @@ +#![allow(dead_code)] +//! # Denoising Diffusion Implicit Models +//! +//! The Denoising Diffusion Implicit Models (DDIM) is a simple scheduler +//! similar to Denoising Diffusion Probabilistic Models (DDPM). The DDPM +//! generative process is the reverse of a Markovian process, DDIM generalizes +//! this to non-Markovian guidance. +//! +//! Denoising Diffusion Implicit Models, J. Song et al, 2020. +//! https://arxiv.org/abs/2010.02502 +use crate::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType}; +use candle::{Result, Tensor}; + +/// The configuration for the DDIM scheduler. +#[derive(Debug, Clone, Copy)] +pub struct DDIMSchedulerConfig { + /// The value of beta at the beginning of training. + pub beta_start: f64, + /// The value of beta at the end of training. + pub beta_end: f64, + /// How beta evolved during training. + pub beta_schedule: BetaSchedule, + /// The amount of noise to be added at each step. + pub eta: f64, + /// Adjust the indexes of the inference schedule by this value. + pub steps_offset: usize, + /// prediction type of the scheduler function, one of `epsilon` (predicting + /// the noise of the diffusion process), `sample` (directly predicting the noisy sample`) + /// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf) + pub prediction_type: PredictionType, + /// number of diffusion steps used to train the model + pub train_timesteps: usize, +} + +impl Default for DDIMSchedulerConfig { + fn default() -> Self { + Self { + beta_start: 0.00085f64, + beta_end: 0.012f64, + beta_schedule: BetaSchedule::ScaledLinear, + eta: 0., + steps_offset: 1, + prediction_type: PredictionType::Epsilon, + train_timesteps: 1000, + } + } +} + +/// The DDIM scheduler. +#[derive(Debug, Clone)] +pub struct DDIMScheduler { + timesteps: Vec<usize>, + alphas_cumprod: Vec<f64>, + step_ratio: usize, + init_noise_sigma: f64, + pub config: DDIMSchedulerConfig, +} + +// clip_sample: False, set_alpha_to_one: False +impl DDIMScheduler { + /// Creates a new DDIM scheduler given the number of steps to be + /// used for inference as well as the number of steps that was used + /// during training. + pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> { + let step_ratio = config.train_timesteps / inference_steps; + let timesteps: Vec<usize> = (0..(inference_steps)) + .map(|s| s * step_ratio + config.steps_offset) + .rev() + .collect(); + let betas = match config.beta_schedule { + BetaSchedule::ScaledLinear => crate::utils::linspace( + config.beta_start.sqrt(), + config.beta_end.sqrt(), + config.train_timesteps, + )? + .sqr()?, + BetaSchedule::Linear => { + crate::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)? + } + BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?, + }; + let betas = betas.to_vec1::<f64>()?; + let mut alphas_cumprod = Vec::with_capacity(betas.len()); + for &beta in betas.iter() { + let alpha = 1.0 - beta; + alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64)) + } + Ok(Self { + alphas_cumprod, + timesteps, + step_ratio, + init_noise_sigma: 1., + config, + }) + } + + pub fn timesteps(&self) -> &[usize] { + self.timesteps.as_slice() + } + + /// Ensures interchangeability with schedulers that need to scale the denoising model input + /// depending on the current timestep. + pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor { + sample + } + + /// Performs a backward step during inference. + pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> { + let timestep = if timestep >= self.alphas_cumprod.len() { + timestep - 1 + } else { + timestep + }; + // https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195 + let prev_timestep = if timestep > self.step_ratio { + timestep - self.step_ratio + } else { + 0 + }; + + let alpha_prod_t = self.alphas_cumprod[timestep]; + let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep]; + let beta_prod_t = 1. - alpha_prod_t; + let beta_prod_t_prev = 1. - alpha_prod_t_prev; + + let (pred_original_sample, pred_epsilon) = match self.config.prediction_type { + PredictionType::Epsilon => { + let pred_original_sample = ((sample - (model_output * beta_prod_t.sqrt())?)? + * (1. / alpha_prod_t.sqrt()))?; + (pred_original_sample, model_output.clone()) + } + PredictionType::VPrediction => { + let pred_original_sample = + ((sample * alpha_prod_t.sqrt())? - (model_output * beta_prod_t.sqrt())?)?; + let pred_epsilon = + ((model_output * alpha_prod_t.sqrt())? + (sample * beta_prod_t.sqrt())?)?; + (pred_original_sample, pred_epsilon) + } + PredictionType::Sample => { + let pred_original_sample = model_output.clone(); + let pred_epsilon = ((sample - &pred_original_sample * alpha_prod_t.sqrt())? + * (1. / beta_prod_t.sqrt()))?; + (pred_original_sample, pred_epsilon) + } + }; + + let variance = (beta_prod_t_prev / beta_prod_t) * (1. - alpha_prod_t / alpha_prod_t_prev); + let std_dev_t = self.config.eta * variance.sqrt(); + + let pred_sample_direction = + (pred_epsilon * (1. - alpha_prod_t_prev - std_dev_t * std_dev_t).sqrt())?; + let prev_sample = + ((pred_original_sample * alpha_prod_t_prev.sqrt())? + pred_sample_direction)?; + if self.config.eta > 0. { + &prev_sample + + Tensor::randn( + 0f32, + std_dev_t as f32, + prev_sample.shape(), + prev_sample.device(), + )? + } else { + Ok(prev_sample) + } + } + + pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> { + let timestep = if timestep >= self.alphas_cumprod.len() { + timestep - 1 + } else { + timestep + }; + let sqrt_alpha_prod = self.alphas_cumprod[timestep].sqrt(); + let sqrt_one_minus_alpha_prod = (1.0 - self.alphas_cumprod[timestep]).sqrt(); + (original * sqrt_alpha_prod)? + (noise * sqrt_one_minus_alpha_prod)? + } + + pub fn init_noise_sigma(&self) -> f64 { + self.init_noise_sigma + } +} |