summaryrefslogtreecommitdiff
path: root/candle-examples/examples/stable-diffusion/ddim.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/stable-diffusion/ddim.rs')
-rw-r--r--candle-examples/examples/stable-diffusion/ddim.rs181
1 files changed, 181 insertions, 0 deletions
diff --git a/candle-examples/examples/stable-diffusion/ddim.rs b/candle-examples/examples/stable-diffusion/ddim.rs
new file mode 100644
index 00000000..9afff5aa
--- /dev/null
+++ b/candle-examples/examples/stable-diffusion/ddim.rs
@@ -0,0 +1,181 @@
+#![allow(dead_code)]
+//! # Denoising Diffusion Implicit Models
+//!
+//! The Denoising Diffusion Implicit Models (DDIM) is a simple scheduler
+//! similar to Denoising Diffusion Probabilistic Models (DDPM). The DDPM
+//! generative process is the reverse of a Markovian process, DDIM generalizes
+//! this to non-Markovian guidance.
+//!
+//! Denoising Diffusion Implicit Models, J. Song et al, 2020.
+//! https://arxiv.org/abs/2010.02502
+use crate::schedulers::{betas_for_alpha_bar, BetaSchedule, PredictionType};
+use candle::{Result, Tensor};
+
+/// The configuration for the DDIM scheduler.
+#[derive(Debug, Clone, Copy)]
+pub struct DDIMSchedulerConfig {
+ /// The value of beta at the beginning of training.
+ pub beta_start: f64,
+ /// The value of beta at the end of training.
+ pub beta_end: f64,
+ /// How beta evolved during training.
+ pub beta_schedule: BetaSchedule,
+ /// The amount of noise to be added at each step.
+ pub eta: f64,
+ /// Adjust the indexes of the inference schedule by this value.
+ pub steps_offset: usize,
+ /// prediction type of the scheduler function, one of `epsilon` (predicting
+ /// the noise of the diffusion process), `sample` (directly predicting the noisy sample`)
+ /// or `v_prediction` (see section 2.4 https://imagen.research.google/video/paper.pdf)
+ pub prediction_type: PredictionType,
+ /// number of diffusion steps used to train the model
+ pub train_timesteps: usize,
+}
+
+impl Default for DDIMSchedulerConfig {
+ fn default() -> Self {
+ Self {
+ beta_start: 0.00085f64,
+ beta_end: 0.012f64,
+ beta_schedule: BetaSchedule::ScaledLinear,
+ eta: 0.,
+ steps_offset: 1,
+ prediction_type: PredictionType::Epsilon,
+ train_timesteps: 1000,
+ }
+ }
+}
+
+/// The DDIM scheduler.
+#[derive(Debug, Clone)]
+pub struct DDIMScheduler {
+ timesteps: Vec<usize>,
+ alphas_cumprod: Vec<f64>,
+ step_ratio: usize,
+ init_noise_sigma: f64,
+ pub config: DDIMSchedulerConfig,
+}
+
+// clip_sample: False, set_alpha_to_one: False
+impl DDIMScheduler {
+ /// Creates a new DDIM scheduler given the number of steps to be
+ /// used for inference as well as the number of steps that was used
+ /// during training.
+ pub fn new(inference_steps: usize, config: DDIMSchedulerConfig) -> Result<Self> {
+ let step_ratio = config.train_timesteps / inference_steps;
+ let timesteps: Vec<usize> = (0..(inference_steps))
+ .map(|s| s * step_ratio + config.steps_offset)
+ .rev()
+ .collect();
+ let betas = match config.beta_schedule {
+ BetaSchedule::ScaledLinear => crate::utils::linspace(
+ config.beta_start.sqrt(),
+ config.beta_end.sqrt(),
+ config.train_timesteps,
+ )?
+ .sqr()?,
+ BetaSchedule::Linear => {
+ crate::utils::linspace(config.beta_start, config.beta_end, config.train_timesteps)?
+ }
+ BetaSchedule::SquaredcosCapV2 => betas_for_alpha_bar(config.train_timesteps, 0.999)?,
+ };
+ let betas = betas.to_vec1::<f64>()?;
+ let mut alphas_cumprod = Vec::with_capacity(betas.len());
+ for &beta in betas.iter() {
+ let alpha = 1.0 - beta;
+ alphas_cumprod.push(alpha * *alphas_cumprod.last().unwrap_or(&1f64))
+ }
+ Ok(Self {
+ alphas_cumprod,
+ timesteps,
+ step_ratio,
+ init_noise_sigma: 1.,
+ config,
+ })
+ }
+
+ pub fn timesteps(&self) -> &[usize] {
+ self.timesteps.as_slice()
+ }
+
+ /// Ensures interchangeability with schedulers that need to scale the denoising model input
+ /// depending on the current timestep.
+ pub fn scale_model_input(&self, sample: Tensor, _timestep: usize) -> Tensor {
+ sample
+ }
+
+ /// Performs a backward step during inference.
+ pub fn step(&self, model_output: &Tensor, timestep: usize, sample: &Tensor) -> Result<Tensor> {
+ let timestep = if timestep >= self.alphas_cumprod.len() {
+ timestep - 1
+ } else {
+ timestep
+ };
+ // https://github.com/huggingface/diffusers/blob/6e099e2c8ce4c4f5c7318e970a8c093dc5c7046e/src/diffusers/schedulers/scheduling_ddim.py#L195
+ let prev_timestep = if timestep > self.step_ratio {
+ timestep - self.step_ratio
+ } else {
+ 0
+ };
+
+ let alpha_prod_t = self.alphas_cumprod[timestep];
+ let alpha_prod_t_prev = self.alphas_cumprod[prev_timestep];
+ let beta_prod_t = 1. - alpha_prod_t;
+ let beta_prod_t_prev = 1. - alpha_prod_t_prev;
+
+ let (pred_original_sample, pred_epsilon) = match self.config.prediction_type {
+ PredictionType::Epsilon => {
+ let pred_original_sample = ((sample - (model_output * beta_prod_t.sqrt())?)?
+ * (1. / alpha_prod_t.sqrt()))?;
+ (pred_original_sample, model_output.clone())
+ }
+ PredictionType::VPrediction => {
+ let pred_original_sample =
+ ((sample * alpha_prod_t.sqrt())? - (model_output * beta_prod_t.sqrt())?)?;
+ let pred_epsilon =
+ ((model_output * alpha_prod_t.sqrt())? + (sample * beta_prod_t.sqrt())?)?;
+ (pred_original_sample, pred_epsilon)
+ }
+ PredictionType::Sample => {
+ let pred_original_sample = model_output.clone();
+ let pred_epsilon = ((sample - &pred_original_sample * alpha_prod_t.sqrt())?
+ * (1. / beta_prod_t.sqrt()))?;
+ (pred_original_sample, pred_epsilon)
+ }
+ };
+
+ let variance = (beta_prod_t_prev / beta_prod_t) * (1. - alpha_prod_t / alpha_prod_t_prev);
+ let std_dev_t = self.config.eta * variance.sqrt();
+
+ let pred_sample_direction =
+ (pred_epsilon * (1. - alpha_prod_t_prev - std_dev_t * std_dev_t).sqrt())?;
+ let prev_sample =
+ ((pred_original_sample * alpha_prod_t_prev.sqrt())? + pred_sample_direction)?;
+ if self.config.eta > 0. {
+ &prev_sample
+ + Tensor::randn(
+ 0f32,
+ std_dev_t as f32,
+ prev_sample.shape(),
+ prev_sample.device(),
+ )?
+ } else {
+ Ok(prev_sample)
+ }
+ }
+
+ pub fn add_noise(&self, original: &Tensor, noise: Tensor, timestep: usize) -> Result<Tensor> {
+ let timestep = if timestep >= self.alphas_cumprod.len() {
+ timestep - 1
+ } else {
+ timestep
+ };
+ let sqrt_alpha_prod = self.alphas_cumprod[timestep].sqrt();
+ let sqrt_one_minus_alpha_prod = (1.0 - self.alphas_cumprod[timestep]).sqrt();
+ (original * sqrt_alpha_prod)? + (noise * sqrt_one_minus_alpha_prod)?
+ }
+
+ pub fn init_noise_sigma(&self) -> f64 {
+ self.init_noise_sigma
+ }
+}