summaryrefslogtreecommitdiff
path: root/candle-examples/examples/whisper/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/whisper/model.rs')
-rw-r--r--candle-examples/examples/whisper/model.rs547
1 files changed, 547 insertions, 0 deletions
diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs
new file mode 100644
index 00000000..53ee6a90
--- /dev/null
+++ b/candle-examples/examples/whisper/model.rs
@@ -0,0 +1,547 @@
+// We use anyhow rather than candle errors as it provides better support for getting the backtrace
+// back when using RUST_LIB_BACKTRACE=1.
+use anyhow::Result;
+use candle::{safetensors::SafeTensors, DType, Device, Shape, Tensor};
+use std::collections::HashMap;
+
+pub struct VarBuilder<'a> {
+ safetensors: Option<(HashMap<String, usize>, Vec<SafeTensors<'a>>)>,
+ dtype: DType,
+ device: Device,
+}
+
+impl<'a> VarBuilder<'a> {
+ pub fn from_safetensors(
+ safetensors: Vec<SafeTensors<'a>>,
+ dtype: DType,
+ device: Device,
+ ) -> Self {
+ let mut routing = HashMap::new();
+ for (index, sf) in safetensors.iter().enumerate() {
+ for k in sf.names() {
+ routing.insert(k.to_string(), index);
+ }
+ }
+ Self {
+ safetensors: Some((routing, safetensors)),
+ device,
+ dtype,
+ }
+ }
+
+ pub fn zeros(dtype: DType, device: Device) -> Self {
+ Self {
+ safetensors: None,
+ device,
+ dtype,
+ }
+ }
+
+ pub fn get<S: Into<Shape>>(&self, s: S, tensor_name: &str) -> candle::Result<Tensor> {
+ let s: Shape = s.into();
+ match &self.safetensors {
+ None => Tensor::zeros(s, self.dtype, &self.device),
+ Some((routing, safetensors)) => {
+ // Unwrap or 0 just to let the proper error flow.
+ let index = routing.get(tensor_name).unwrap_or(&0);
+ let tensor = safetensors[*index]
+ .tensor(tensor_name, &self.device)?
+ .to_dtype(self.dtype)?;
+ if *tensor.shape() != s {
+ let msg = format!("shape mismatch for {tensor_name}");
+ Err(candle::Error::UnexpectedShape {
+ msg,
+ expected: s,
+ got: tensor.shape().clone(),
+ })?
+ }
+ Ok(tensor)
+ }
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+enum HiddenAct {
+ Gelu,
+ Relu,
+}
+
+impl HiddenAct {
+ fn forward(&self, xs: &Tensor) -> candle::Result<Tensor> {
+ match self {
+ Self::Gelu => xs.gelu(),
+ Self::Relu => xs.relu(),
+ }
+ }
+}
+
+#[derive(Debug, Clone, PartialEq)]
+pub struct Config {
+ pub n_mels: usize,
+ pub n_audio_ctx: usize,
+ pub n_audio_state: usize,
+ pub n_audio_head: usize,
+ pub n_audio_layer: usize,
+ pub n_vocab: usize,
+ pub n_text_ctx: usize,
+ pub n_text_state: usize,
+ pub n_text_head: usize,
+ pub n_text_layer: usize,
+}
+
+impl Config {
+ pub fn tiny_en() -> Self {
+ Self {
+ n_mels: 80,
+ n_vocab: 51864,
+ n_audio_ctx: 1500,
+ n_audio_state: 384,
+ n_audio_head: 6,
+ n_audio_layer: 4,
+ n_text_ctx: 448,
+ n_text_state: 384,
+ n_text_head: 6,
+ n_text_layer: 4,
+ }
+ }
+}
+
+struct Embedding {
+ embeddings: Tensor,
+ hidden_size: usize,
+}
+
+impl Embedding {
+ fn new(embeddings: Tensor, hidden_size: usize) -> Self {
+ Self {
+ embeddings,
+ hidden_size,
+ }
+ }
+
+ fn load(vocab_size: usize, hidden_size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let embeddings = vb.get((vocab_size, hidden_size), &format!("{p}.weight"))?;
+ Ok(Self::new(embeddings, hidden_size))
+ }
+
+ fn forward(&self, indexes: &Tensor) -> Result<Tensor> {
+ let mut final_dims = indexes.dims().to_vec();
+ final_dims.push(self.hidden_size);
+ let indexes = indexes.flatten_all()?;
+ let values = Tensor::embedding(&indexes, &self.embeddings)?;
+ let values = values.reshape(final_dims)?;
+ Ok(values)
+ }
+}
+
+struct Linear {
+ weight: Tensor,
+ bias: Option<Tensor>,
+}
+
+impl Linear {
+ fn load(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
+ let bias = vb.get(size2, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias: Some(bias),
+ })
+ }
+
+ fn load_no_bias(size1: usize, size2: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get((size2, size1), &format!("{p}.weight"))?;
+ Ok(Self { weight, bias: None })
+ }
+
+ fn forward(&self, x: &Tensor) -> candle::Result<Tensor> {
+ let (bsize, _, _) = x.shape().r3()?;
+ let w = self.weight.broadcast_left(bsize)?.t()?;
+ let x = x.matmul(&w)?;
+ match &self.bias {
+ None => Ok(x),
+ Some(bias) => x.broadcast_add(bias),
+ }
+ }
+}
+
+#[derive(Debug, Clone, Copy, PartialEq, Eq)]
+struct ConvConfig {
+ padding: usize,
+ stride: usize,
+}
+
+impl Default for ConvConfig {
+ fn default() -> Self {
+ Self {
+ padding: 0,
+ stride: 1,
+ }
+ }
+}
+
+struct Conv1D {
+ weight: Tensor,
+ bias: Option<Tensor>,
+ config: ConvConfig,
+}
+
+impl Conv1D {
+ fn load(
+ in_channels: usize,
+ out_channels: usize,
+ kernel_size: usize,
+ config: ConvConfig,
+ p: &str,
+ vb: &VarBuilder,
+ ) -> Result<Self> {
+ let weight = vb.get(
+ (out_channels, in_channels, kernel_size),
+ &format!("{p}.weight"),
+ )?;
+ let bias = vb.get(out_channels, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias: Some(bias),
+ config,
+ })
+ }
+
+ fn load_no_bias(
+ in_channels: usize,
+ out_channels: usize,
+ kernel_size: usize,
+ config: ConvConfig,
+ p: &str,
+ vb: &VarBuilder,
+ ) -> Result<Self> {
+ let weight = vb.get(
+ (out_channels, in_channels, kernel_size),
+ &format!("{p}.weight"),
+ )?;
+ Ok(Self {
+ weight,
+ bias: None,
+ config,
+ })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = x.conv1d(&self.weight, self.config.padding, self.config.stride)?;
+ match &self.bias {
+ None => Ok(x),
+ Some(bias) => {
+ let b = bias.shape().r1()?;
+ let bias = bias.reshape((1, b, 1))?;
+ Ok(x.broadcast_add(&bias)?)
+ }
+ }
+ }
+}
+
+struct Dropout {
+ pr: f64,
+}
+
+impl Dropout {
+ fn new(pr: f64) -> Self {
+ Self { pr }
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ // TODO
+ Ok(x.clone())
+ }
+}
+
+// This layer norm version handles both weight and bias so removes the mean.
+struct LayerNorm {
+ weight: Tensor,
+ bias: Tensor,
+ eps: f64,
+}
+
+impl LayerNorm {
+ fn load(size: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let weight = vb.get(size, &format!("{p}.weight"))?;
+ let bias = vb.get(size, &format!("{p}.bias"))?;
+ Ok(Self {
+ weight,
+ bias,
+ eps: 1e-5,
+ })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let (_bsize, _seq_len, hidden_size) = x.shape().r3()?;
+ let mean_x = (x.sum(&[2])? / hidden_size as f64)?;
+ let x = x.broadcast_sub(&mean_x)?;
+ let norm_x = ((&x * &x)?.sum(&[2])? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ let x = x_normed
+ .broadcast_mul(&self.weight)?
+ .broadcast_add(&self.bias)?;
+ Ok(x)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
+struct MultiHeadAttention {
+ query: Linear,
+ key: Linear,
+ value: Linear,
+ out: Linear,
+ n_head: usize,
+}
+
+impl MultiHeadAttention {
+ fn load(n_state: usize, n_head: usize, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let query = Linear::load(n_state, n_state, &format!("{p}.query"), vb)?;
+ let value = Linear::load(n_state, n_state, &format!("{p}.value"), vb)?;
+ let key = Linear::load_no_bias(n_state, n_state, &format!("{p}.key"), vb)?;
+ let out = Linear::load(n_state, n_state, &format!("{p}.out"), vb)?;
+ Ok(Self {
+ query,
+ key,
+ value,
+ out,
+ n_head,
+ })
+ }
+
+ fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
+ let q = self.query.forward(x)?;
+ let k = self.key.forward(xa.unwrap_or(x))?;
+ let v = self.value.forward(xa.unwrap_or(x))?;
+ let wv = self.qkv_attention(&q, &k, &v, mask)?;
+ let out = self.out.forward(&wv)?;
+ Ok(out)
+ }
+
+ fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
+ let (n_batch, n_ctx, n_state) = x.shape().r3()?;
+ let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
+ Ok(x.reshape(target_dims)?.transpose(1, 2)?)
+ }
+
+ fn qkv_attention(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ mask: Option<&Tensor>,
+ ) -> Result<Tensor> {
+ let (_, n_ctx, n_state) = q.shape().r3()?;
+ let scale = ((n_state / self.n_head) as f64).powf(-0.25);
+ let q = (self.reshape_head(q)? * scale)?;
+ let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
+ let v = self.reshape_head(v)?.contiguous()?;
+ let mut qk = q.matmul(&k)?;
+ if let Some(mask) = mask {
+ let mask = mask.narrow(0, 0, n_ctx)?.narrow(1, 0, n_ctx)?;
+ qk = qk.broadcast_add(&mask)?
+ }
+ let w = qk.softmax(qk.rank() - 1)?;
+ let wv = w.matmul(&v)?.transpose(1, 2)?.flatten(Some(2), None)?;
+ Ok(wv)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
+struct ResidualAttentionBlock {
+ attn: MultiHeadAttention,
+ attn_ln: LayerNorm,
+ cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
+ mlp_linear1: Linear,
+ mlp_linear2: Linear,
+ mlp_ln: LayerNorm,
+}
+
+impl ResidualAttentionBlock {
+ fn load(n_state: usize, n_head: usize, ca: bool, p: &str, vb: &VarBuilder) -> Result<Self> {
+ let attn = MultiHeadAttention::load(n_state, n_head, &format!("{p}.attn"), vb)?;
+ let attn_ln = LayerNorm::load(n_state, &format!("{p}.attn_ln"), vb)?;
+ let cross_attn = if ca {
+ let cross_attn =
+ MultiHeadAttention::load(n_state, n_head, &format!("{p}.cross_attn"), vb)?;
+ let cross_attn_ln = LayerNorm::load(n_state, &format!("{p}.cross_attn_ln"), vb)?;
+ Some((cross_attn, cross_attn_ln))
+ } else {
+ None
+ };
+ let n_mlp = n_state * 4;
+ let mlp_linear1 = Linear::load(n_state, n_mlp, &format!("{p}.mlp.0"), vb)?;
+ let mlp_linear2 = Linear::load(n_mlp, n_state, &format!("{p}.mlp.2"), vb)?;
+ let mlp_ln = LayerNorm::load(n_state, &format!("{p}.mlp_ln"), vb)?;
+ Ok(Self {
+ attn,
+ attn_ln,
+ cross_attn,
+ mlp_linear1,
+ mlp_linear2,
+ mlp_ln,
+ })
+ }
+
+ fn forward(&self, x: &Tensor, xa: Option<&Tensor>, mask: Option<&Tensor>) -> Result<Tensor> {
+ let attn = self.attn.forward(&self.attn_ln.forward(x)?, None, mask)?;
+ let mut x = (x + attn)?;
+ if let Some((attn, ln)) = &self.cross_attn {
+ x = (&x + attn.forward(&ln.forward(&x)?, xa, None)?)?;
+ }
+ let mlp = self.mlp_linear2.forward(
+ &self
+ .mlp_linear1
+ .forward(&self.mlp_ln.forward(&x)?)?
+ .gelu()?,
+ )?;
+ Ok((x + mlp)?)
+ }
+}
+
+fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
+ let max_timescale = 10000f32;
+ let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
+ let inv_timescales: Vec<_> = (0..channels / 2)
+ .map(|i| (i as f32 * (-log_timescale_increment)).exp())
+ .collect();
+ let arange: Vec<_> = (0..length).map(|c| c as f32).collect();
+ let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
+ let arange = Tensor::new(arange.as_slice(), &Device::Cpu)?.unsqueeze(1)?;
+ let sh = (length, channels / 2);
+ let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
+ let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
+ Ok(sincos)
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
+pub struct AudioEncoder {
+ conv1: Conv1D,
+ conv2: Conv1D,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln_post: LayerNorm,
+}
+
+impl AudioEncoder {
+ fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
+ let n_state = cfg.n_audio_state;
+ let n_head = cfg.n_audio_head;
+ let n_ctx = cfg.n_audio_ctx;
+ let cfg1 = ConvConfig {
+ padding: 1,
+ stride: 1,
+ };
+ let cfg2 = ConvConfig {
+ padding: 1,
+ stride: 2,
+ };
+ let conv1 = Conv1D::load(cfg.n_mels, n_state, 3, cfg1, &format!("{p}.conv1"), vb)?;
+ let conv2 = Conv1D::load(n_state, n_state, 3, cfg2, &format!("{p}.conv2"), vb)?;
+ let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(&vb.device)?;
+ let blocks = (0..cfg.n_audio_layer)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, false, &format!("{p}.blocks.{i}"), vb)
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln_post = LayerNorm::load(n_state, &format!("{p}.ln_post"), vb)?;
+ Ok(Self {
+ conv1,
+ conv2,
+ positional_embedding,
+ blocks,
+ ln_post,
+ })
+ }
+ pub fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x = self.conv1.forward(x)?.gelu()?;
+ let x = self.conv2.forward(&x)?.gelu()?;
+ let x = x.transpose(1, 2)?;
+ let mut x = x.broadcast_add(&self.positional_embedding)?;
+ for block in self.blocks.iter() {
+ x = block.forward(&x, None, None)?
+ }
+ let x = self.ln_post.forward(&x)?;
+ Ok(x)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
+pub struct TextDecoder {
+ token_embedding: Embedding,
+ positional_embedding: Tensor,
+ blocks: Vec<ResidualAttentionBlock>,
+ ln: LayerNorm,
+ mask: Tensor,
+}
+
+impl TextDecoder {
+ fn load(p: &str, vb: &VarBuilder, cfg: &Config) -> Result<Self> {
+ let n_state = cfg.n_text_state;
+ let n_head = cfg.n_text_head;
+ let n_ctx = cfg.n_text_ctx;
+ let token_embedding =
+ Embedding::load(cfg.n_vocab, n_state, &format!("{p}.token_embedding"), vb)?;
+ let positional_embedding =
+ vb.get((n_ctx, n_state), &format!("{p}.positional_embedding"))?;
+ let blocks = (0..cfg.n_text_layer)
+ .map(|i| {
+ ResidualAttentionBlock::load(n_state, n_head, true, &format!("{p}.blocks.{i}"), vb)
+ })
+ .collect::<Result<Vec<_>>>()?;
+ let ln = LayerNorm::load(n_state, &format!("{p}.ln"), vb)?;
+ let mask: Vec<_> = (0..n_ctx)
+ .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
+ .collect();
+ let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), &vb.device)?;
+
+ Ok(Self {
+ token_embedding,
+ positional_embedding,
+ blocks,
+ ln,
+ mask,
+ })
+ }
+
+ pub fn forward(&self, x: &Tensor, xa: &Tensor) -> Result<Tensor> {
+ let x_dims = x.dims();
+ let last = x_dims[x_dims.len() - 1];
+ let token_embedding = self.token_embedding.forward(x)?;
+ let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
+ let mut x = token_embedding.broadcast_add(&positional_embedding)?;
+ for block in self.blocks.iter() {
+ x = block.forward(&x, Some(xa), Some(&self.mask))?;
+ }
+ let x = self.ln.forward(&x)?;
+ let w = self.token_embedding.embeddings.broadcast_left(x_dims[0])?;
+ let logits = x.matmul(&w.t()?)?;
+ Ok(logits)
+ }
+}
+
+// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
+pub struct Whisper {
+ pub encoder: AudioEncoder,
+ pub decoder: TextDecoder,
+ pub config: Config,
+}
+
+impl Whisper {
+ pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
+ let encoder = AudioEncoder::load("encoder", vb, &config)?;
+ let decoder = TextDecoder::load("decoder", vb, &config)?;
+ Ok(Self {
+ encoder,
+ decoder,
+ config,
+ })
+ }
+
+ pub fn forward(&self, mel: &Tensor, tokens: &Tensor) -> Result<Tensor> {
+ let enc = self.encoder.forward(mel)?;
+ let dec = self.decoder.forward(tokens, &enc)?;
+ Ok(dec)
+ }
+}