summaryrefslogtreecommitdiff
path: root/candle-examples/examples/whisper/model.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-examples/examples/whisper/model.rs')
-rw-r--r--candle-examples/examples/whisper/model.rs416
1 files changed, 0 insertions, 416 deletions
diff --git a/candle-examples/examples/whisper/model.rs b/candle-examples/examples/whisper/model.rs
deleted file mode 100644
index e58ab2ca..00000000
--- a/candle-examples/examples/whisper/model.rs
+++ /dev/null
@@ -1,416 +0,0 @@
-use candle::{Device, IndexOp, Result, Tensor, D};
-use candle_nn::{ops::softmax, Conv1d, Conv1dConfig, Embedding, LayerNorm, Module, VarBuilder};
-use serde::Deserialize;
-
-// The names in comments correspond to the original implementation:
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L17
-#[derive(Debug, Clone, PartialEq, Deserialize)]
-pub struct Config {
- pub num_mel_bins: usize, // n_mels
- pub max_source_positions: usize, // n_audio_ctx
- pub d_model: usize, // n_audio_state
- pub encoder_attention_heads: usize, // n_audio_head
- pub encoder_layers: usize, // n_audio_layer
- pub vocab_size: usize, // n_vocab
- pub max_target_positions: usize, // n_text_ctx
- // pub n_text_state: usize,
- pub decoder_attention_heads: usize, // n_text_head
- pub decoder_layers: usize, // n_text_layer
- pub suppress_tokens: Vec<u32>,
-}
-
-fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> {
- let embeddings = vb.get((vocab_size, hidden_size), "weight")?;
- Ok(Embedding::new(embeddings, hidden_size))
-}
-//
-// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
-// model.
-#[derive(Debug)]
-pub struct Linear {
- inner: candle_nn::Linear,
- span: tracing::Span,
-}
-
-impl Linear {
- fn forward(&self, x: &Tensor) -> Result<Tensor> {
- let _enter = self.span.enter();
- self.inner.forward(x)
- }
-}
-
-fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn linear_no_bias(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
- let span = tracing::span!(tracing::Level::TRACE, "linear");
- let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
- Ok(Linear { inner, span })
-}
-
-fn conv1d(
- in_channels: usize,
- out_channels: usize,
- kernel_size: usize,
- config: Conv1dConfig,
- vb: VarBuilder,
-) -> Result<Conv1d> {
- let weight = vb.get((out_channels, in_channels, kernel_size), "weight")?;
- let bias = vb.get(out_channels, "bias")?;
- Ok(Conv1d::new(weight, Some(bias), config))
-}
-
-fn layer_norm(size: usize, vb: VarBuilder) -> Result<LayerNorm> {
- let weight = vb.get(size, "weight")?;
- let bias = vb.get(size, "bias")?;
- Ok(LayerNorm::new(weight, bias, 1e-5))
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L62
-struct MultiHeadAttention {
- query: Linear,
- key: Linear,
- value: Linear,
- out: Linear,
- n_head: usize,
- span: tracing::Span,
- softmax_span: tracing::Span,
- matmul_span: tracing::Span,
- kv_cache: Option<(Tensor, Tensor)>,
-}
-
-impl MultiHeadAttention {
- fn load(n_state: usize, n_head: usize, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "multi-head-attn");
- let softmax_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-softmax");
- let matmul_span = tracing::span!(tracing::Level::TRACE, "multi-head-attn-matmul");
- let query = linear(n_state, n_state, vb.pp("q_proj"))?;
- let value = linear(n_state, n_state, vb.pp("v_proj"))?;
- let key = linear_no_bias(n_state, n_state, vb.pp("k_proj"))?;
- let out = linear(n_state, n_state, vb.pp("out_proj"))?;
- Ok(Self {
- query,
- key,
- value,
- out,
- n_head,
- span,
- softmax_span,
- matmul_span,
- kv_cache: None,
- })
- }
-
- fn forward(
- &mut self,
- x: &Tensor,
- xa: Option<&Tensor>,
- mask: Option<&Tensor>,
- flush_cache: bool,
- ) -> Result<Tensor> {
- let _enter = self.span.enter();
- let q = self.query.forward(x)?;
- let (k, v) = match xa {
- None => {
- let k = self.key.forward(x)?;
- let v = self.value.forward(x)?;
- (k, v)
- }
- Some(x) => {
- if flush_cache {
- self.kv_cache = None;
- }
- if let Some((k, v)) = &self.kv_cache {
- (k.clone(), v.clone())
- } else {
- let k = self.key.forward(x)?;
- let v = self.value.forward(x)?;
- self.kv_cache = Some((k.clone(), v.clone()));
- (k, v)
- }
- }
- };
- let wv = self.qkv_attention(&q, &k, &v, mask)?;
- let out = self.out.forward(&wv)?;
- Ok(out)
- }
-
- fn reshape_head(&self, x: &Tensor) -> Result<Tensor> {
- let (n_batch, n_ctx, n_state) = x.dims3()?;
- let target_dims = &[n_batch, n_ctx, self.n_head, n_state / self.n_head];
- x.reshape(target_dims)?.transpose(1, 2)
- }
-
- fn qkv_attention(
- &self,
- q: &Tensor,
- k: &Tensor,
- v: &Tensor,
- mask: Option<&Tensor>,
- ) -> Result<Tensor> {
- let (_, n_ctx, n_state) = q.dims3()?;
- let scale = ((n_state / self.n_head) as f64).powf(-0.25);
- let q = (self.reshape_head(q)? * scale)?;
- let k = (self.reshape_head(k)?.transpose(2, 3)? * scale)?;
- let v = self.reshape_head(v)?.contiguous()?;
- let mut qk = {
- let _enter = self.matmul_span.enter();
- q.matmul(&k)?
- };
- if let Some(mask) = mask {
- let mask = mask.i((0..n_ctx, 0..n_ctx))?;
- qk = qk.broadcast_add(&mask)?
- }
- let w = {
- let _enter = self.softmax_span.enter();
- softmax(&qk, D::Minus1)?
- };
- let wv = {
- let _enter = self.matmul_span.enter();
- w.matmul(&v)?
- }
- .transpose(1, 2)?
- .flatten_from(2)?;
- Ok(wv)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L111
-struct ResidualAttentionBlock {
- attn: MultiHeadAttention,
- attn_ln: LayerNorm,
- cross_attn: Option<(MultiHeadAttention, LayerNorm)>,
- mlp_linear1: Linear,
- mlp_linear2: Linear,
- mlp_ln: LayerNorm,
- span: tracing::Span,
-}
-
-impl ResidualAttentionBlock {
- fn load(n_state: usize, n_head: usize, ca: bool, vb: VarBuilder) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "residual-attn");
- let attn = MultiHeadAttention::load(n_state, n_head, vb.pp("self_attn"))?;
- let attn_ln = layer_norm(n_state, vb.pp("self_attn_layer_norm"))?;
- let cross_attn = if ca {
- let cross_attn = MultiHeadAttention::load(n_state, n_head, vb.pp("encoder_attn"))?;
- let cross_attn_ln = layer_norm(n_state, vb.pp("encoder_attn_layer_norm"))?;
- Some((cross_attn, cross_attn_ln))
- } else {
- None
- };
- let n_mlp = n_state * 4;
- let mlp_linear1 = linear(n_state, n_mlp, vb.pp("fc1"))?;
- let mlp_linear2 = linear(n_mlp, n_state, vb.pp("fc2"))?;
- let mlp_ln = layer_norm(n_state, vb.pp("final_layer_norm"))?;
- Ok(Self {
- attn,
- attn_ln,
- cross_attn,
- mlp_linear1,
- mlp_linear2,
- mlp_ln,
- span,
- })
- }
-
- fn forward(
- &mut self,
- x: &Tensor,
- xa: Option<&Tensor>,
- mask: Option<&Tensor>,
- flush_kv_cache: bool,
- ) -> Result<Tensor> {
- let _enter = self.span.enter();
- let attn = self
- .attn
- .forward(&self.attn_ln.forward(x)?, None, mask, flush_kv_cache)?;
- let mut x = (x + attn)?;
- if let Some((attn, ln)) = &mut self.cross_attn {
- x = (&x + attn.forward(&ln.forward(&x)?, xa, None, flush_kv_cache)?)?;
- }
- let mlp = self.mlp_linear2.forward(
- &self
- .mlp_linear1
- .forward(&self.mlp_ln.forward(&x)?)?
- .gelu()?,
- )?;
- x + mlp
- }
-}
-
-fn sinusoids(length: usize, channels: usize) -> Result<Tensor> {
- let max_timescale = 10000f32;
- let log_timescale_increment = max_timescale.ln() / (channels / 2 - 1) as f32;
- let inv_timescales: Vec<_> = (0..channels / 2)
- .map(|i| (i as f32 * (-log_timescale_increment)).exp())
- .collect();
- let inv_timescales = Tensor::new(inv_timescales.as_slice(), &Device::Cpu)?.unsqueeze(0)?;
- let arange = Tensor::arange(0, length as u32, &Device::Cpu)?
- .to_dtype(candle::DType::F32)?
- .unsqueeze(1)?;
- let sh = (length, channels / 2);
- let scaled_time = (arange.broadcast_as(sh)? * inv_timescales.broadcast_as(sh)?)?;
- let sincos = Tensor::cat(&[scaled_time.sin()?, scaled_time.cos()?], 1)?;
- Ok(sincos)
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L143
-pub struct AudioEncoder {
- conv1: Conv1d,
- conv2: Conv1d,
- positional_embedding: Tensor,
- blocks: Vec<ResidualAttentionBlock>,
- ln_post: LayerNorm,
- span: tracing::Span,
- conv1_span: tracing::Span,
- conv2_span: tracing::Span,
-}
-
-impl AudioEncoder {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "audio-encoder");
- let conv1_span = tracing::span!(tracing::Level::TRACE, "conv1");
- let conv2_span = tracing::span!(tracing::Level::TRACE, "conv2");
- let n_state = cfg.d_model;
- let n_head = cfg.encoder_attention_heads;
- let n_ctx = cfg.max_source_positions;
- let cfg1 = Conv1dConfig {
- padding: 1,
- stride: 1,
- groups: 1,
- dilation: 1,
- };
- let cfg2 = Conv1dConfig {
- padding: 1,
- stride: 2,
- groups: 1,
- dilation: 1,
- };
- let conv1 = conv1d(cfg.num_mel_bins, n_state, 3, cfg1, vb.pp("conv1"))?;
- let conv2 = conv1d(n_state, n_state, 3, cfg2, vb.pp("conv2"))?;
- let positional_embedding = sinusoids(n_ctx, n_state)?.to_device(vb.device())?;
- let blocks = (0..cfg.encoder_layers)
- .map(|i| {
- ResidualAttentionBlock::load(n_state, n_head, false, vb.pp(&format!("layers.{i}")))
- })
- .collect::<Result<Vec<_>>>()?;
- let ln_post = layer_norm(n_state, vb.pp("layer_norm"))?;
- Ok(Self {
- conv1,
- conv2,
- positional_embedding,
- blocks,
- ln_post,
- conv1_span,
- conv2_span,
- span,
- })
- }
-
- pub fn forward(&mut self, x: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
- let _enter = self.span.enter();
- let x = {
- let _enter = self.conv1_span.enter();
- self.conv1.forward(x)?.gelu()?
- };
- let x = {
- let _enter = self.conv2_span.enter();
- self.conv2.forward(&x)?.gelu()?
- };
- let x = x.transpose(1, 2)?;
- let (_bsize, seq_len, _hidden) = x.dims3()?;
- let positional_embedding = self.positional_embedding.narrow(0, 0, seq_len)?;
- let mut x = x.broadcast_add(&positional_embedding)?;
- for block in self.blocks.iter_mut() {
- x = block.forward(&x, None, None, flush_kv_cache)?
- }
- let x = self.ln_post.forward(&x)?;
- Ok(x)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L176
-pub struct TextDecoder {
- token_embedding: Embedding,
- positional_embedding: Tensor,
- blocks: Vec<ResidualAttentionBlock>,
- ln: LayerNorm,
- mask: Tensor,
- span: tracing::Span,
- span_final: tracing::Span,
-}
-
-impl TextDecoder {
- fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
- let span = tracing::span!(tracing::Level::TRACE, "text-decoder");
- let span_final = tracing::span!(tracing::Level::TRACE, "text-decoder-final");
- let n_state = cfg.d_model;
- let n_head = cfg.decoder_attention_heads;
- let n_ctx = cfg.max_target_positions;
- let token_embedding = embedding(cfg.vocab_size, n_state, vb.pp("embed_tokens"))?;
- let positional_embedding = vb.get((n_ctx, n_state), "embed_positions.weight")?;
- let blocks = (0..cfg.decoder_layers)
- .map(|i| {
- ResidualAttentionBlock::load(n_state, n_head, true, vb.pp(&format!("layers.{i}")))
- })
- .collect::<Result<Vec<_>>>()?;
- let ln = layer_norm(n_state, vb.pp("layer_norm"))?;
- let mask: Vec<_> = (0..n_ctx)
- .flat_map(|i| (0..n_ctx).map(move |j| if j > i { f32::NEG_INFINITY } else { 0f32 }))
- .collect();
- let mask = Tensor::from_vec(mask, (n_ctx, n_ctx), vb.device())?;
- Ok(Self {
- token_embedding,
- positional_embedding,
- blocks,
- ln,
- mask,
- span,
- span_final,
- })
- }
-
- pub fn forward(&mut self, x: &Tensor, xa: &Tensor, flush_kv_cache: bool) -> Result<Tensor> {
- let _enter = self.span.enter();
- let last = x.dim(D::Minus1)?;
- let token_embedding = self.token_embedding.forward(x)?;
- let positional_embedding = self.positional_embedding.narrow(0, 0, last)?;
- let mut x = token_embedding.broadcast_add(&positional_embedding)?;
- for block in self.blocks.iter_mut() {
- x = block.forward(&x, Some(xa), Some(&self.mask), flush_kv_cache)?;
- }
- self.ln.forward(&x)
- }
-
- pub fn final_linear(&self, x: &Tensor) -> Result<Tensor> {
- let b_size = x.dim(0)?;
- let w = self.token_embedding.embeddings().broadcast_left(b_size)?;
- let logits = {
- let _enter = self.span_final.enter();
- x.matmul(&w.t()?)?
- };
- Ok(logits)
- }
-}
-
-// https://github.com/openai/whisper/blob/f572f2161ba831bae131364c3bffdead7af6d210/whisper/model.py#L221
-pub struct Whisper {
- pub encoder: AudioEncoder,
- pub decoder: TextDecoder,
- pub config: Config,
-}
-
-impl Whisper {
- pub fn load(vb: &VarBuilder, config: Config) -> Result<Self> {
- let encoder = AudioEncoder::load(vb.pp("model.encoder"), &config)?;
- let decoder = TextDecoder::load(vb.pp("model.decoder"), &config)?;
- Ok(Self {
- encoder,
- decoder,
- config,
- })
- }
-}