diff options
Diffstat (limited to 'candle-examples/examples')
-rw-r--r-- | candle-examples/examples/bert/main.rs | 2 | ||||
-rw-r--r-- | candle-examples/examples/falcon/model.rs | 6 | ||||
-rw-r--r-- | candle-examples/examples/llama/model.rs | 2 | ||||
-rw-r--r-- | candle-examples/examples/musicgen/encodec_model.rs | 2 | ||||
-rw-r--r-- | candle-examples/examples/musicgen/musicgen_model.rs | 4 | ||||
-rw-r--r-- | candle-examples/examples/whisper/main.rs | 2 |
6 files changed, 9 insertions, 9 deletions
diff --git a/candle-examples/examples/bert/main.rs b/candle-examples/examples/bert/main.rs index d8f6921e..1c3c429b 100644 --- a/candle-examples/examples/bert/main.rs +++ b/candle-examples/examples/bert/main.rs @@ -196,7 +196,7 @@ impl BertEmbeddings { if let Some(position_embeddings) = &self.position_embeddings { // TODO: Proper absolute positions? let position_ids = (0..seq_len as u32).collect::<Vec<_>>(); - let position_ids = Tensor::new(&position_ids[..], &input_ids.device())?; + let position_ids = Tensor::new(&position_ids[..], input_ids.device())?; embeddings = embeddings.broadcast_add(&position_embeddings.forward(&position_ids)?)? } let embeddings = self.layer_norm.forward(&embeddings)?; diff --git a/candle-examples/examples/falcon/model.rs b/candle-examples/examples/falcon/model.rs index 82c5d4b2..60821add 100644 --- a/candle-examples/examples/falcon/model.rs +++ b/candle-examples/examples/falcon/model.rs @@ -183,7 +183,7 @@ impl FalconRotaryEmbedding { past_kv_len: usize, ) -> Result<(Tensor, Tensor)> { let (_batch, seq_len, _head_dim) = query.shape().r3()?; - let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, &query.device(), query.dtype())?; + let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?; let cos = cos.narrow(0, past_kv_len, seq_len)?; let sin = sin.narrow(0, past_kv_len, seq_len)?; let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?; @@ -194,7 +194,7 @@ impl FalconRotaryEmbedding { fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); - let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?; + let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } @@ -471,7 +471,7 @@ impl Falcon { Some((k, _)) => k.dim(1)?, None => 0, }; - let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(&input_ids.device())?; + let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?; for block in self.blocks.iter_mut() { hidden_state = block.forward(&hidden_state, &causal_mask, past_kv_len)?; } diff --git a/candle-examples/examples/llama/model.rs b/candle-examples/examples/llama/model.rs index daab199d..04397d1e 100644 --- a/candle-examples/examples/llama/model.rs +++ b/candle-examples/examples/llama/model.rs @@ -227,7 +227,7 @@ impl CausalSelfAttention { fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { let shape = mask.shape(); - let on_true = Tensor::new(on_true, &on_false.device())?.broadcast_as(shape.dims())?; + let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; let m = mask.where_cond(&on_true, on_false)?; Ok(m) } diff --git a/candle-examples/examples/musicgen/encodec_model.rs b/candle-examples/examples/musicgen/encodec_model.rs index f9b883fe..2ef6f20f 100644 --- a/candle-examples/examples/musicgen/encodec_model.rs +++ b/candle-examples/examples/musicgen/encodec_model.rs @@ -180,7 +180,7 @@ impl EncodecResidualVectorQuantizer { } fn decode(&self, codes: &Tensor) -> Result<Tensor> { - let mut quantized_out = Tensor::zeros((), DType::F32, &codes.device())?; + let mut quantized_out = Tensor::zeros((), DType::F32, codes.device())?; if codes.dim(0)? != self.layers.len() { anyhow::bail!( "codes shape {:?} does not match the number of quantization layers {}", diff --git a/candle-examples/examples/musicgen/musicgen_model.rs b/candle-examples/examples/musicgen/musicgen_model.rs index 512e35e8..3c5e66f8 100644 --- a/candle-examples/examples/musicgen/musicgen_model.rs +++ b/candle-examples/examples/musicgen/musicgen_model.rs @@ -311,13 +311,13 @@ impl MusicgenDecoder { let (b_sz_times_codebooks, seq_len) = input_ids.shape().r2()?; let b_sz = b_sz_times_codebooks / self.num_codebooks; let input = input_ids.reshape((b_sz, self.num_codebooks, seq_len))?; - let mut inputs_embeds = Tensor::zeros((b_sz, seq_len, self.d_model), DType::F32, &dev)?; + let mut inputs_embeds = Tensor::zeros((b_sz, seq_len, self.d_model), DType::F32, dev)?; for (idx, codebook) in self.embed_tokens.iter().enumerate() { let inp = input.narrow(1, idx, 1)?.squeeze(1)?; inputs_embeds = (inputs_embeds + codebook.forward(&inp)?)? } let inputs_embeds = inputs_embeds; - let positions = self.embed_positions.forward(&input)?.to_device(&dev)?; + let positions = self.embed_positions.forward(&input)?.to_device(dev)?; let mut xs = inputs_embeds.broadcast_add(&positions)?; let attention_mask = self.prepare_decoder_attention_mask(b_sz, seq_len)?; for (_layer_idx, decoder_layer) in self.layers.iter_mut().enumerate() { diff --git a/candle-examples/examples/whisper/main.rs b/candle-examples/examples/whisper/main.rs index 9403b8b1..d0329f4d 100644 --- a/candle-examples/examples/whisper/main.rs +++ b/candle-examples/examples/whisper/main.rs @@ -109,7 +109,7 @@ impl Decoder { let mut no_speech_prob = f64::NAN; let mut tokens = vec![SOT_TOKEN]; for i in 0..sample_len { - let tokens_t = Tensor::new(tokens.as_slice(), &mel.device())?; + let tokens_t = Tensor::new(tokens.as_slice(), mel.device())?; // The model expects a batch dim but this inference loop does not handle // it so we add it at this point. |