summaryrefslogtreecommitdiff
path: root/candle-nn/src/vision/mnist.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-nn/src/vision/mnist.rs')
-rw-r--r--candle-nn/src/vision/mnist.rs65
1 files changed, 0 insertions, 65 deletions
diff --git a/candle-nn/src/vision/mnist.rs b/candle-nn/src/vision/mnist.rs
deleted file mode 100644
index 2267f9a0..00000000
--- a/candle-nn/src/vision/mnist.rs
+++ /dev/null
@@ -1,65 +0,0 @@
-//! The MNIST hand-written digit dataset.
-//!
-//! The files can be obtained from the following link:
-//! <http://yann.lecun.com/exdb/mnist/>
-use candle::{DType, Device, Result, Tensor};
-use std::fs::File;
-use std::io::{self, BufReader, Read};
-
-fn read_u32<T: Read>(reader: &mut T) -> Result<u32> {
- let mut b = vec![0u8; 4];
- reader.read_exact(&mut b)?;
- let (result, _) = b.iter().rev().fold((0u64, 1u64), |(s, basis), &x| {
- (s + basis * u64::from(x), basis * 256)
- });
- Ok(result as u32)
-}
-
-fn check_magic_number<T: Read>(reader: &mut T, expected: u32) -> Result<()> {
- let magic_number = read_u32(reader)?;
- if magic_number != expected {
- Err(io::Error::new(
- io::ErrorKind::Other,
- format!("incorrect magic number {magic_number} != {expected}"),
- ))?;
- }
- Ok(())
-}
-
-fn read_labels(filename: &std::path::Path) -> Result<Tensor> {
- let mut buf_reader = BufReader::new(File::open(filename)?);
- check_magic_number(&mut buf_reader, 2049)?;
- let samples = read_u32(&mut buf_reader)?;
- let mut data = vec![0u8; samples as usize];
- buf_reader.read_exact(&mut data)?;
- let samples = data.len();
- Tensor::from_vec(data, samples, &Device::Cpu)
-}
-
-fn read_images(filename: &std::path::Path) -> Result<Tensor> {
- let mut buf_reader = BufReader::new(File::open(filename)?);
- check_magic_number(&mut buf_reader, 2051)?;
- let samples = read_u32(&mut buf_reader)? as usize;
- let rows = read_u32(&mut buf_reader)? as usize;
- let cols = read_u32(&mut buf_reader)? as usize;
- let data_len = samples * rows * cols;
- let mut data = vec![0u8; data_len];
- buf_reader.read_exact(&mut data)?;
- let tensor = Tensor::from_vec(data, (samples, rows * cols), &Device::Cpu)?;
- tensor.to_dtype(DType::F32)? / 255.
-}
-
-pub fn load_dir<T: AsRef<std::path::Path>>(dir: T) -> Result<crate::vision::Dataset> {
- let dir = dir.as_ref();
- let train_images = read_images(&dir.join("train-images-idx3-ubyte"))?;
- let train_labels = read_labels(&dir.join("train-labels-idx1-ubyte"))?;
- let test_images = read_images(&dir.join("t10k-images-idx3-ubyte"))?;
- let test_labels = read_labels(&dir.join("t10k-labels-idx1-ubyte"))?;
- Ok(crate::vision::Dataset {
- train_images,
- train_labels,
- test_images,
- test_labels,
- labels: 10,
- })
-}