diff options
Diffstat (limited to 'candle-onnx/tests/ops.rs')
-rw-r--r-- | candle-onnx/tests/ops.rs | 144 |
1 files changed, 144 insertions, 0 deletions
diff --git a/candle-onnx/tests/ops.rs b/candle-onnx/tests/ops.rs index 30e2480b..a53ad8c5 100644 --- a/candle-onnx/tests/ops.rs +++ b/candle-onnx/tests/ops.rs @@ -2020,6 +2020,150 @@ fn test_random_uniform() -> Result<()> { Ok(()) } +// "RandomNormal" +#[test] +fn test_random_normal() -> Result<()> { + test(vec![3, 2, 1, 4], None, None)?; + test(vec![2, 2, 2, 2], Some(-10.0), None)?; + test(vec![2, 2, 2, 2], None, Some(10.0))?; + test(vec![1, 2, 3, 4], Some(-10.0), Some(10.0))?; + + fn test(shape: Vec<i64>, mean: Option<f32>, scale: Option<f32>) -> Result<()> { + let att_mean = AttributeProto { + name: "mean".to_string(), + ref_attr_name: "mean".to_string(), + i: 0, + doc_string: "mean".to_string(), + r#type: 1, // FLOAT + f: mean.unwrap_or(0.0), + s: vec![], + t: None, + g: None, + sparse_tensor: None, + tp: None, + floats: vec![], + ints: vec![], + strings: vec![], + tensors: vec![], + graphs: vec![], + sparse_tensors: vec![], + type_protos: vec![], + }; + let att_scale = AttributeProto { + name: "scale".to_string(), + ref_attr_name: "scale".to_string(), + i: 0, + doc_string: "scale".to_string(), + r#type: 1, // FLOAT + f: scale.unwrap_or(1.0), + s: vec![], + t: None, + g: None, + sparse_tensor: None, + tp: None, + floats: vec![], + ints: vec![], + strings: vec![], + tensors: vec![], + graphs: vec![], + sparse_tensors: vec![], + type_protos: vec![], + }; + let att_shape = AttributeProto { + name: "shape".to_string(), + ref_attr_name: "shape".to_string(), + i: 0, + doc_string: "shape".to_string(), + r#type: 7, // INTS + f: 0.0, + s: vec![], + t: None, + g: None, + sparse_tensor: None, + tp: None, + floats: vec![], + ints: shape, + strings: vec![], + tensors: vec![], + graphs: vec![], + sparse_tensors: vec![], + type_protos: vec![], + }; + let att_dtype = AttributeProto { + name: "dtype".to_string(), + ref_attr_name: "dtype".to_string(), + i: 11, // DOUBLE + doc_string: "dtype".to_string(), + r#type: 2, // INT + f: 0.0, + s: vec![], + t: None, + g: None, + sparse_tensor: None, + tp: None, + floats: vec![], + ints: vec![], + strings: vec![], + tensors: vec![], + graphs: vec![], + sparse_tensors: vec![], + type_protos: vec![], + }; + let attrs = { + let mut mut_attrs = vec![att_shape, att_dtype]; + if mean.is_some() { + mut_attrs.push(att_mean); + } + if scale.is_some() { + mut_attrs.push(att_scale); + } + mut_attrs + }; + let manual_graph = create_model_proto_with_graph(Some(GraphProto { + node: vec![NodeProto { + op_type: "RandomNormal".to_string(), + domain: "".to_string(), + attribute: attrs, + input: vec![], + output: vec![OUTPUT_Z.to_string()], + name: "".to_string(), + doc_string: "".to_string(), + }], + name: "".to_string(), + initializer: vec![], + input: vec![], + output: vec![ValueInfoProto { + name: OUTPUT_Z.to_string(), + doc_string: "".to_string(), + r#type: None, + }], + value_info: vec![], + doc_string: "".to_string(), + sparse_initializer: vec![], + quantization_annotation: vec![], + })); + let eval = candle_onnx::simple_eval(&manual_graph, HashMap::new())?; + assert_eq!(eval.len(), 1); + + let z = eval.get(OUTPUT_Z).expect("Output 'z' not found"); + let data = z.flatten_all()?.to_vec1::<f64>()?; + + // test if values are unique + for (i, a) in data.iter().enumerate() { + for (j, b) in data.iter().enumerate() { + if i == j { + continue; + }; + assert_ne!(a, b); + } + } + + Ok(()) + } + + Ok(()) +} + // "Range" #[test] fn test_range() -> Result<()> { |