summaryrefslogtreecommitdiff
path: root/candle-pyo3
diff options
context:
space:
mode:
Diffstat (limited to 'candle-pyo3')
-rw-r--r--candle-pyo3/Cargo.toml4
-rw-r--r--candle-pyo3/src/lib.rs47
-rw-r--r--candle-pyo3/test.py4
3 files changed, 52 insertions, 3 deletions
diff --git a/candle-pyo3/Cargo.toml b/candle-pyo3/Cargo.toml
index fd2890f6..37244914 100644
--- a/candle-pyo3/Cargo.toml
+++ b/candle-pyo3/Cargo.toml
@@ -18,3 +18,7 @@ crate-type = ["cdylib"]
candle = { path = "../candle-core", default-features=false }
pyo3 = { version = "0.19.0", features = ["extension-module"] }
half = { version = "2.3.1", features = ["num-traits"] }
+
+[features]
+default = ["cuda"]
+cuda = ["candle/cuda"]
diff --git a/candle-pyo3/src/lib.rs b/candle-pyo3/src/lib.rs
index d5d472d5..62eb21e8 100644
--- a/candle-pyo3/src/lib.rs
+++ b/candle-pyo3/src/lib.rs
@@ -4,7 +4,7 @@ use pyo3::types::PyTuple;
use half::{bf16, f16};
-use ::candle::{DType, Device::Cpu, Tensor, WithDType};
+use ::candle::{DType, Device, Tensor, WithDType};
pub fn wrap_err(err: ::candle::Error) -> PyErr {
PyErr::new::<PyValueError, _>(format!("{err:?}"))
@@ -30,7 +30,7 @@ impl<'source> FromPyObject<'source> for PyDType {
use std::str::FromStr;
let dtype: &str = ob.extract()?;
let dtype = DType::from_str(dtype)
- .map_err(|_| PyTypeError::new_err(format!("invalid dtype {dtype}")))?;
+ .map_err(|_| PyTypeError::new_err(format!("invalid dtype '{dtype}'")))?;
Ok(Self(dtype))
}
}
@@ -41,6 +41,43 @@ impl ToPyObject for PyDType {
}
}
+#[derive(Clone, Copy, Debug, PartialEq, Eq)]
+enum PyDevice {
+ Cpu,
+ Cuda,
+}
+
+impl PyDevice {
+ fn from_device(device: Device) -> Self {
+ match device {
+ Device::Cpu => Self::Cpu,
+ Device::Cuda(_) => Self::Cuda,
+ }
+ }
+}
+
+impl<'source> FromPyObject<'source> for PyDevice {
+ fn extract(ob: &'source PyAny) -> PyResult<Self> {
+ let device: &str = ob.extract()?;
+ let device = match device {
+ "cpu" => PyDevice::Cpu,
+ "cuda" => PyDevice::Cuda,
+ _ => Err(PyTypeError::new_err(format!("invalid device '{device}'")))?,
+ };
+ Ok(device)
+ }
+}
+
+impl ToPyObject for PyDevice {
+ fn to_object(&self, py: Python<'_>) -> PyObject {
+ let str = match self {
+ PyDevice::Cpu => "cpu",
+ PyDevice::Cuda => "cuda",
+ };
+ str.to_object(py)
+ }
+}
+
trait PyWithDType: WithDType {
fn to_py(&self, py: Python<'_>) -> PyObject;
}
@@ -83,6 +120,7 @@ impl PyTensor {
#[new]
// TODO: Handle arbitrary input dtype and shape.
fn new(py: Python<'_>, vs: PyObject) -> PyResult<Self> {
+ use Device::Cpu;
let tensor = if let Ok(vs) = vs.extract::<u32>(py) {
Tensor::new(vs, &Cpu).map_err(wrap_err)?
} else if let Ok(vs) = vs.extract::<Vec<u32>>(py) {
@@ -156,6 +194,11 @@ impl PyTensor {
}
#[getter]
+ fn device(&self, py: Python<'_>) -> PyObject {
+ PyDevice::from_device(self.0.device()).to_object(py)
+ }
+
+ #[getter]
fn rank(&self) -> usize {
self.0.rank()
}
diff --git a/candle-pyo3/test.py b/candle-pyo3/test.py
index 1d792de5..8f906060 100644
--- a/candle-pyo3/test.py
+++ b/candle-pyo3/test.py
@@ -2,12 +2,14 @@ import candle
t = candle.Tensor(42.0)
print(t)
-print("shape", t.shape, t.rank)
+print(t.shape, t.rank, t.device)
print(t + t)
t = candle.Tensor([3.0, 1, 4, 1, 5, 9, 2, 6])
print(t)
print(t+t)
+
t = t.reshape([2, 4])
print(t.matmul(t.t()))
+
print(t.to_dtype("u8"))