diff options
Diffstat (limited to 'candle-transformers/src/models/falcon.rs')
-rw-r--r-- | candle-transformers/src/models/falcon.rs | 484 |
1 files changed, 484 insertions, 0 deletions
diff --git a/candle-transformers/src/models/falcon.rs b/candle-transformers/src/models/falcon.rs new file mode 100644 index 00000000..6ede136a --- /dev/null +++ b/candle-transformers/src/models/falcon.rs @@ -0,0 +1,484 @@ +use candle::{DType, Device, Result, Tensor, D}; +use candle_nn::{Embedding, LayerNorm, Linear, Module, VarBuilder}; + +const MAX_SEQ_LEN: usize = 5000; + +fn linear(size1: usize, size2: usize, bias: bool, vb: VarBuilder) -> Result<Linear> { + let weight = vb.get((size2, size1), "weight")?; + let bias = if bias { + Some(vb.get(size2, "bias")?) + } else { + None + }; + Ok(Linear::new(weight, bias)) +} + +fn layer_norm(size: usize, eps: f64, vb: VarBuilder) -> Result<LayerNorm> { + let (weight, bias) = match (vb.get(size, "weight"), vb.get(size, "bias")) { + (Ok(weight), Ok(bias)) => (weight, bias), + (Err(err), _) | (_, Err(err)) => { + if let (Ok(weight), Ok(bias)) = (vb.get(size, "gamma"), vb.get(size, "beta")) { + (weight, bias) + } else { + return Err(err); + } + } + }; + Ok(LayerNorm::new(weight, bias, eps)) +} + +fn embedding(vocab_size: usize, hidden_size: usize, vb: VarBuilder) -> Result<Embedding> { + let embeddings = vb.get((vocab_size, hidden_size), "weight")?; + Ok(Embedding::new(embeddings, hidden_size)) +} + +// https://raw.githubusercontent.com/huggingface/transformers/030c863aaa0165e98352b61697430bf69bf33755/src/transformers/models/falcon/configuration_falcon.py +#[derive(Debug)] +pub struct Config { + pub vocab_size: usize, + pub hidden_size: usize, + pub num_hidden_layers: usize, + pub num_attention_heads: usize, + pub layer_norm_epsilon: f64, + pub initializer_range: f64, + pub use_cache: bool, + pub bos_token_id: u32, + pub eos_token_id: u32, + pub hidden_dropout: f64, + pub attention_dropout: f64, + pub n_head_kv: Option<usize>, + pub alibi: bool, + pub new_decoder_architecture: bool, + pub multi_query: bool, + pub parallel_attn: bool, + pub bias: bool, +} + +impl Default for Config { + fn default() -> Self { + Self { + vocab_size: 65024, + hidden_size: 4544, + num_hidden_layers: 32, + num_attention_heads: 71, + layer_norm_epsilon: 1e-5, + initializer_range: 0.02, + use_cache: true, + bos_token_id: 11, + eos_token_id: 11, + hidden_dropout: 0.0, + attention_dropout: 0.0, + n_head_kv: None, + alibi: false, + new_decoder_architecture: false, + multi_query: true, + parallel_attn: true, + bias: false, + } + } +} + +impl Config { + pub fn validate(&self) -> Result<()> { + if self.alibi { + candle::bail!("alibi is not supported"); + } + if self.new_decoder_architecture { + candle::bail!("new_decoder_architecture is not supported"); + } + if self.n_head_kv.is_some() { + candle::bail!("n_head_kv is not supported"); + } + Ok(()) + } + + // https://huggingface.co/tiiuae/falcon-7b/blob/main/config.json + pub fn falcon7b() -> Self { + // This is currently on par with the defaults, the defaults come from the Python default + // arguments for the config initialization whereas the following come from the json config. + Self { + vocab_size: 65024, + hidden_size: 4544, + num_hidden_layers: 32, + num_attention_heads: 71, + layer_norm_epsilon: 1e-5, + initializer_range: 0.02, + use_cache: true, + bos_token_id: 11, + eos_token_id: 11, + hidden_dropout: 0., + attention_dropout: 0., + n_head_kv: None, + alibi: false, + new_decoder_architecture: false, + multi_query: true, + parallel_attn: true, + bias: false, + } + } + + fn head_dim(&self) -> usize { + self.hidden_size / self.num_attention_heads + } + + fn rotary(&self) -> bool { + !self.alibi + } +} + +fn rotate_half(x: &Tensor) -> Result<Tensor> { + let l = x.dim(D::Minus1)?; + let x1 = x.narrow(D::Minus1, 0, l / 2)?; + let x2 = x.narrow(D::Minus1, l / 2, l - l / 2)?; + let x21 = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?; + Ok(x21) +} + +#[derive(Debug)] +struct FalconRotaryEmbedding { + inv_freq: Tensor, + cache: Option<(usize, Tensor, Tensor)>, +} + +impl FalconRotaryEmbedding { + fn load(device: &Device, cfg: &Config) -> Result<Self> { + let head_dim = cfg.head_dim(); + let inv_freq: Vec<_> = (0..head_dim) + .step_by(2) + .map(|i| 1f32 / 10000f32.powf(i as f32 / head_dim as f32)) + .collect(); + Ok(Self { + inv_freq: Tensor::new(inv_freq.as_slice(), device)?, + cache: None, + }) + } + + fn cos_sin( + &mut self, + seq_len: usize, + device: &Device, + dtype: DType, + ) -> Result<(Tensor, Tensor)> { + match &self.cache { + Some((s, cos, sin)) if *s == seq_len => { + return Ok((cos.clone(), sin.clone())); + } + _ => {} + } + let t = Tensor::arange(0, seq_len as u32, device)?.to_dtype(dtype)?; + let inv_freq = self.inv_freq.to_dtype(dtype)?; + let freqs = t.unsqueeze(1)?.matmul(&inv_freq.unsqueeze(0)?)?; + let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?; + let cos = emb.cos()?; + let sin = emb.sin()?; + self.cache = Some((seq_len, cos.clone(), sin.clone())); + Ok((cos, sin)) + } + + fn forward( + &mut self, + query: &Tensor, + key: &Tensor, + past_kv_len: usize, + ) -> Result<(Tensor, Tensor)> { + let (_batch, seq_len, _head_dim) = query.dims3()?; + let (cos, sin) = self.cos_sin(MAX_SEQ_LEN, query.device(), query.dtype())?; + let cos = cos.narrow(0, past_kv_len, seq_len)?; + let sin = sin.narrow(0, past_kv_len, seq_len)?; + let qs = (query.broadcast_mul(&cos)? + &rotate_half(query)?.broadcast_mul(&sin)?)?; + let ks = (key.broadcast_mul(&cos)? + &rotate_half(key)?.broadcast_mul(&sin)?)?; + Ok((qs, ks)) + } +} + +fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> { + let shape = mask.shape(); + let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?; + let m = mask.where_cond(&on_true, on_false)?; + Ok(m) +} + +#[derive(Debug)] +struct FalconAttention { + query_key_value: Linear, + dense: Linear, + maybe_rotary: Option<FalconRotaryEmbedding>, + kv_cache: Option<(Tensor, Tensor)>, + inv_norm_factor: f64, + multi_query: bool, + use_cache: bool, + num_heads: usize, + head_dim: usize, + n_head_kv: usize, +} + +impl FalconAttention { + fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { + let maybe_rotary = if cfg.rotary() { + let rotary = FalconRotaryEmbedding::load(vb.device(), cfg)?; + Some(rotary) + } else { + None + }; + let head_dim = cfg.head_dim(); + let hidden_size = cfg.hidden_size; + let qkv_out_dim = if cfg.multi_query { + hidden_size + 2 * head_dim + } else { + 3 * hidden_size + }; + let query_key_value = linear(hidden_size, qkv_out_dim, cfg.bias, vb.pp("query_key_value"))?; + let dense = linear(hidden_size, hidden_size, cfg.bias, vb.pp("dense"))?; + Ok(Self { + query_key_value, + dense, + maybe_rotary, + kv_cache: None, + inv_norm_factor: 1. / (head_dim as f64).sqrt(), + multi_query: cfg.multi_query, + use_cache: cfg.use_cache, + num_heads: cfg.num_attention_heads, + n_head_kv: cfg.n_head_kv.unwrap_or(1), + head_dim, + }) + } + + fn split_heads(&self, fused_qkv: &Tensor) -> Result<(Tensor, Tensor, Tensor)> { + let (b_sz, seq_len, _) = fused_qkv.dims3()?; + if !self.multi_query { + let fused_qkv = fused_qkv.reshape((b_sz, seq_len, self.num_heads, 3, self.head_dim))?; + let q = fused_qkv.narrow(D::Minus2, 0, 1)?.squeeze(D::Minus2)?; + let k = fused_qkv.narrow(D::Minus2, 1, 1)?.squeeze(D::Minus2)?; + let v = fused_qkv.narrow(D::Minus2, 2, 1)?.squeeze(D::Minus2)?; + Ok((q, k, v)) + } else { + let fused_qkv = + fused_qkv.reshape((b_sz, seq_len, self.num_heads + 2, self.head_dim))?; + let d = fused_qkv.dim(D::Minus2)?; + let q = fused_qkv.narrow(D::Minus2, 0, d - 2)?; + let k = fused_qkv.narrow(D::Minus2, d - 2, 1)?; + let v = fused_qkv.narrow(D::Minus2, d - 1, 1)?; + Ok((q, k, v)) + } + } + + fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> { + let fused_qkv = self.query_key_value.forward(x)?; + let head_dim = self.head_dim; + let (query, key, value) = self.split_heads(&fused_qkv)?; + let (b_sz, seq_len, _, _) = query.dims4()?; + let query = query + .transpose(1, 2)? + .reshape((b_sz * self.num_heads, seq_len, head_dim))?; + let key = key + .transpose(1, 2)? + .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?; + let value = value + .transpose(1, 2)? + .reshape((b_sz * self.n_head_kv, seq_len, head_dim))?; + let (query, key) = if let Some(r) = &mut self.maybe_rotary { + r.forward(&query, &key, past_kv_len)? + } else { + (query, key) + }; + let (mut key, mut value) = (key, value); + let mask = masked_fill(&mask.to_dtype(DType::F32)?, mask, -1e9)?.to_dtype(query.dtype())?; + if self.use_cache { + if let Some((cache_k, cache_v)) = &self.kv_cache { + // TODO: we could trim the tensors to MAX_SEQ_LEN so that this would work for + // arbitrarily large sizes. + key = Tensor::cat(&[cache_k, &key], 1)?.contiguous()?; + value = Tensor::cat(&[cache_v, &value], 1)?.contiguous()?; + } + self.kv_cache = Some((key.clone(), value.clone())) + } + let query = query.reshape((b_sz * self.num_heads, seq_len, head_dim))?; + let all_len = past_kv_len + seq_len; + let key = key.reshape((b_sz * self.n_head_kv, all_len, head_dim))?; + let value = value.reshape((b_sz * self.n_head_kv, all_len, head_dim))?; + + let (key, value) = if self.n_head_kv == 1 { + ( + key.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?, + value.broadcast_as((b_sz * self.num_heads, all_len, head_dim))?, + ) + } else { + (key, value) + }; + + // Only handle the case where alibi is None here, and non-flash attention. + let attention_scores = (query.matmul(&key.t()?)? * self.inv_norm_factor)?; + let attention_scores = candle_nn::ops::softmax( + &attention_scores + .broadcast_add(&mask.squeeze(1)?)? + .to_dtype(DType::F32)?, + D::Minus1, + )? + .to_dtype(x.dtype())?; + let attn_output = attention_scores + .matmul(&value)? + .reshape((b_sz, self.num_heads, seq_len, head_dim))? + .transpose(1, 2)? + .reshape((b_sz, seq_len, self.num_heads * head_dim))?; + let attn_output = self.dense.forward(&attn_output)?; + Ok(attn_output) + } +} + +#[derive(Debug)] +struct FalconMlp { + dense_h_to_4h: Linear, + dense_4h_to_h: Linear, +} + +impl FalconMlp { + fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { + let h = cfg.hidden_size; + let b = cfg.bias; + let dense_h_to_4h = linear(h, 4 * h, b, vb.pp("dense_h_to_4h"))?; + let dense_4h_to_h = linear(4 * h, h, b, vb.pp("dense_4h_to_h"))?; + Ok(Self { + dense_h_to_4h, + dense_4h_to_h, + }) + } + + fn forward(&self, x: &Tensor) -> Result<Tensor> { + let x = self.dense_h_to_4h.forward(x)?.gelu()?; + let x = self.dense_4h_to_h.forward(&x)?; + Ok(x) + } +} + +#[derive(Debug)] +struct FalconDecoderLayer { + inp_layernorm: LayerNorm, + self_attention: FalconAttention, + post_attention_layernorm: Option<LayerNorm>, + mlp: FalconMlp, + parallel_attn: bool, +} + +impl FalconDecoderLayer { + fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> { + let mlp = FalconMlp::load(vb.pp("mlp"), cfg)?; + let inp_layernorm = layer_norm( + cfg.hidden_size, + cfg.layer_norm_epsilon, + vb.pp("input_layernorm"), + )?; + let self_attention = FalconAttention::load(vb.pp("self_attention"), cfg)?; + let post_attention_layernorm = if cfg.parallel_attn { + None + } else { + let ln = layer_norm( + cfg.hidden_size, + cfg.layer_norm_epsilon, + vb.pp("post_attention_layernorm"), + )?; + Some(ln) + }; + Ok(Self { + inp_layernorm, + self_attention, + post_attention_layernorm, + mlp, + parallel_attn: cfg.parallel_attn, + }) + } + + fn forward(&mut self, x: &Tensor, mask: &Tensor, past_kv_len: usize) -> Result<Tensor> { + let residual = x.clone(); + let ln_attn = self.inp_layernorm.forward(x)?; + let attn_output = self.self_attention.forward(&ln_attn, mask, past_kv_len)?; + let (residual, ln_mlp) = match &self.post_attention_layernorm { + None => (residual, ln_attn), + Some(pal) => { + // This should include some dropout. + let residual = (&attn_output + &residual)?; + let ln_mlp = pal.forward(&residual)?; + (residual, ln_mlp) + } + }; + let mlp_output = self.mlp.forward(&ln_mlp)?; + + let mlp_output = if self.parallel_attn { + (mlp_output + attn_output)? + } else { + mlp_output + }; + let output = (mlp_output + residual)?; + Ok(output) + } +} + +#[derive(Debug)] +pub struct Falcon { + word_embeddings: Embedding, + blocks: Vec<FalconDecoderLayer>, + ln_f: LayerNorm, + lm_head: Linear, + config: Config, +} + +fn make_causal_mask(t: usize) -> Result<Tensor> { + let mask: Vec<_> = (0..t) + .flat_map(|i| (0..t).map(move |j| u8::from(j > i))) + .collect(); + let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?; + Ok(mask) +} + +fn prepare_attn_mask(b_sz: usize, seq_len: usize) -> Result<Tensor> { + // let mask = Tensor::ones((b_sz, seq_len), DType::U32, &Device::Cpu)?; + let mask = make_causal_mask(seq_len)?; + let mask = mask.broadcast_as((b_sz, 1, seq_len, seq_len))?; + Ok(mask) +} + +impl Falcon { + pub fn config(&self) -> &Config { + &self.config + } + + pub fn load(vb: VarBuilder, cfg: Config) -> Result<Self> { + let word_embeddings = embedding( + cfg.vocab_size, + cfg.hidden_size, + vb.pp("transformer.word_embeddings"), + )?; + let blocks = (0..cfg.num_hidden_layers) + .map(|i| FalconDecoderLayer::load(vb.pp(&format!("transformer.h.{i}")), &cfg)) + .collect::<Result<Vec<_>>>()?; + let ln_f = layer_norm( + cfg.hidden_size, + cfg.layer_norm_epsilon, + vb.pp("transformer.ln_f"), + )?; + let lm_head = linear(cfg.hidden_size, cfg.vocab_size, false, vb.pp("lm_head"))?; + Ok(Self { + word_embeddings, + blocks, + ln_f, + lm_head, + config: cfg, + }) + } + + pub fn forward(&mut self, input_ids: &Tensor) -> Result<Tensor> { + let (b_sz, seq_len) = input_ids.dims2()?; + let mut hidden_state = self.word_embeddings.forward(input_ids)?; + let past_kv_len = match &self.blocks[0].self_attention.kv_cache { + Some((k, _)) => k.dim(1)?, + None => 0, + }; + let causal_mask = prepare_attn_mask(b_sz, seq_len)?.to_device(input_ids.device())?; + for block in self.blocks.iter_mut() { + hidden_state = block.forward(&hidden_state, &causal_mask, past_kv_len)?; + } + let hidden_state = self.ln_f.forward(&hidden_state)?; + let hidden_state = hidden_state.narrow(1, seq_len - 1, 1)?; + let logits = self.lm_head.forward(&hidden_state)?.squeeze(1)?; + Ok(logits) + } +} |