summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/llama.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src/models/llama.rs')
-rw-r--r--candle-transformers/src/models/llama.rs446
1 files changed, 446 insertions, 0 deletions
diff --git a/candle-transformers/src/models/llama.rs b/candle-transformers/src/models/llama.rs
new file mode 100644
index 00000000..eed4df5e
--- /dev/null
+++ b/candle-transformers/src/models/llama.rs
@@ -0,0 +1,446 @@
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, Module, VarBuilder};
+use serde::Deserialize;
+use std::collections::HashMap;
+use std::sync::{Arc, Mutex};
+
+pub const MAX_SEQ_LEN: usize = 4096;
+
+#[derive(Deserialize)]
+pub struct LlamaConfig {
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub vocab_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: Option<usize>,
+ pub rms_norm_eps: f64,
+ #[serde(default = "default_rope")]
+ pub rope_theta: f32,
+}
+
+fn default_rope() -> f32 {
+ 10_000.0
+}
+
+impl LlamaConfig {
+ pub fn into_config(self, use_flash_attn: bool) -> Config {
+ Config {
+ hidden_size: self.hidden_size,
+ intermediate_size: self.intermediate_size,
+ vocab_size: self.vocab_size,
+ num_hidden_layers: self.num_hidden_layers,
+ num_attention_heads: self.num_attention_heads,
+ num_key_value_heads: self.num_key_value_heads.unwrap_or(self.num_attention_heads),
+ rms_norm_eps: self.rms_norm_eps,
+ rope_theta: self.rope_theta,
+ use_flash_attn,
+ }
+ }
+}
+
+pub struct Config {
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub vocab_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: usize,
+ pub use_flash_attn: bool,
+ pub rms_norm_eps: f64,
+ pub rope_theta: f32,
+}
+
+impl Config {
+ pub fn config_7b_v1(use_flash_attn: bool) -> Self {
+ Self {
+ hidden_size: 4096,
+ intermediate_size: 11008,
+ vocab_size: 32000,
+ num_hidden_layers: 32,
+ num_attention_heads: 32,
+ num_key_value_heads: 32,
+ use_flash_attn,
+ rms_norm_eps: 1e-6,
+ rope_theta: 10_000.0,
+ }
+ }
+
+ pub fn config_7b_v2(use_flash_attn: bool) -> Self {
+ Self {
+ hidden_size: 4096,
+ intermediate_size: 11008,
+ vocab_size: 32000,
+ num_hidden_layers: 32,
+ num_attention_heads: 32,
+ num_key_value_heads: 32,
+ use_flash_attn,
+ rms_norm_eps: 1e-5,
+ rope_theta: 10_000.0,
+ }
+ }
+}
+
+// We wrap the `Linear` layer here to add some tracing so that it's easier to profile the resulting
+// model.
+#[derive(Debug)]
+pub struct Linear {
+ inner: candle_nn::Linear,
+ span: tracing::Span,
+}
+
+impl Linear {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+#[derive(Clone)]
+pub struct Cache {
+ masks: Arc<Mutex<HashMap<usize, Tensor>>>,
+ pub use_kv_cache: bool,
+ #[allow(clippy::type_complexity)]
+ kvs: Arc<Mutex<Vec<Option<(Tensor, Tensor)>>>>,
+ cos: Tensor,
+ sin: Tensor,
+ device: Device,
+}
+
+impl Cache {
+ pub fn new(use_kv_cache: bool, dtype: DType, config: &Config, device: &Device) -> Result<Self> {
+ // precompute freqs_cis
+ let n_elem = config.hidden_size / config.num_attention_heads;
+ let theta: Vec<_> = (0..n_elem)
+ .step_by(2)
+ .map(|i| 1f32 / config.rope_theta.powf(i as f32 / n_elem as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), device)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, device)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ // This is different from the paper, see:
+ // https://github.com/huggingface/transformers/blob/6112b1c6442aaf7affd2b0676a1cd4eee30c45cf/src/transformers/models/llama/modeling_llama.py#L112
+ let idx_theta = Tensor::cat(&[&idx_theta, &idx_theta], D::Minus1)?;
+ let cos = idx_theta.cos()?.to_dtype(dtype)?;
+ let sin = idx_theta.sin()?.to_dtype(dtype)?;
+ Ok(Self {
+ masks: Arc::new(Mutex::new(HashMap::new())),
+ use_kv_cache,
+ kvs: Arc::new(Mutex::new(vec![None; config.num_hidden_layers])),
+ device: device.clone(),
+ cos,
+ sin,
+ })
+ }
+
+ fn mask(&self, t: usize) -> Result<Tensor> {
+ let mut masks = self.masks.lock().unwrap();
+ if let Some(mask) = masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &self.device)?;
+ masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+}
+
+fn linear(size1: usize, size2: usize, vb: VarBuilder) -> Result<Linear> {
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ let inner = candle_nn::linear_no_bias(size1, size2, vb)?;
+ Ok(Linear { inner, span })
+}
+
+fn embedding(cfg: &Config, vb: VarBuilder) -> Result<Embedding> {
+ let embeddings = vb.get((cfg.vocab_size, cfg.hidden_size), "weight")?;
+ Ok(Embedding::new(embeddings, cfg.hidden_size))
+}
+
+struct RmsNorm {
+ inner: candle_nn::RmsNorm,
+ span: tracing::Span,
+}
+
+impl RmsNorm {
+ fn load(size: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
+ let inner = candle_nn::rms_norm(size, eps, vb)?;
+ Ok(Self { inner, span })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+struct CausalSelfAttention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_attention_heads: usize,
+ num_key_value_heads: usize,
+ head_dim: usize,
+ cache: Cache,
+ use_flash_attn: bool,
+ span: tracing::Span,
+ span_rot: tracing::Span,
+}
+
+#[cfg(feature = "flash-attn")]
+fn flash_attn(
+ q: &Tensor,
+ k: &Tensor,
+ v: &Tensor,
+ softmax_scale: f32,
+ causal: bool,
+) -> Result<Tensor> {
+ candle_flash_attn::flash_attn(q, k, v, softmax_scale, causal)
+}
+
+#[cfg(not(feature = "flash-attn"))]
+fn flash_attn(_: &Tensor, _: &Tensor, _: &Tensor, _: f32, _: bool) -> Result<Tensor> {
+ unimplemented!("compile with '--features flash-attn'")
+}
+
+impl CausalSelfAttention {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (b_sz, _, seq_len, hidden_size) = x.dims4()?;
+ let cos = self.cache.cos.narrow(0, index_pos, seq_len)?;
+ let sin = self.cache.sin.narrow(0, index_pos, seq_len)?;
+ let cos = cos.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
+ let sin = sin.broadcast_as((b_sz, 1, seq_len, hidden_size))?;
+ let x1 = x.narrow(D::Minus1, 0, hidden_size / 2)?;
+ let x2 = x.narrow(D::Minus1, hidden_size / 2, hidden_size / 2)?;
+ let rotate_x = Tensor::cat(&[&x2.neg()?, &x1], D::Minus1)?;
+ let rope = (x.broadcast_mul(&cos)? + rotate_x.broadcast_mul(&sin)?)?;
+ Ok(rope)
+ }
+
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b_sz, seq_len, hidden_size) = x.dims3()?;
+ let q = self.q_proj.forward(x)?;
+ let k = self.k_proj.forward(x)?;
+ let v = self.v_proj.forward(x)?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.num_attention_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let k = k
+ .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let mut v = v
+ .reshape((b_sz, seq_len, self.num_key_value_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let mut k = self.apply_rotary_emb(&k, index_pos)?;
+
+ if self.cache.use_kv_cache {
+ let mut cache = self.cache.kvs.lock().unwrap();
+ if let Some((cache_k, cache_v)) = &cache[block_idx] {
+ k = Tensor::cat(&[cache_k, &k], 2)?.contiguous()?;
+ v = Tensor::cat(&[cache_v, &v], 2)?.contiguous()?;
+ let k_seq_len = k.dims()[1];
+ if k_seq_len > MAX_SEQ_LEN {
+ k = k
+ .narrow(D::Minus1, k_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
+ .contiguous()?
+ }
+ let v_seq_len = v.dims()[1];
+ if v_seq_len > 2 * MAX_SEQ_LEN {
+ v = v
+ .narrow(D::Minus1, v_seq_len - MAX_SEQ_LEN, MAX_SEQ_LEN)?
+ .contiguous()?
+ }
+ }
+ cache[block_idx] = Some((k.clone(), v.clone()))
+ }
+
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let y = if self.use_flash_attn {
+ // flash-attn expects (b_sz, seq_len, nheads, head_dim)
+ let q = q.transpose(1, 2)?;
+ let k = k.transpose(1, 2)?;
+ let v = v.transpose(1, 2)?;
+ let softmax_scale = 1f32 / (self.head_dim as f32).sqrt();
+ flash_attn(&q, &k, &v, softmax_scale, seq_len > 1)?.transpose(1, 2)?
+ } else {
+ let in_dtype = q.dtype();
+ let q = q.to_dtype(DType::F32)?;
+ let k = k.to_dtype(DType::F32)?;
+ let v = v.to_dtype(DType::F32)?;
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = self.cache.mask(seq_len)?.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ att.matmul(&v.contiguous()?)?.to_dtype(in_dtype)?
+ };
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, hidden_size])?;
+ let y = self.o_proj.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_attention_heads / self.num_key_value_heads;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(2)?
+ .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
+ Ok(x)
+ }
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let size_in = cfg.hidden_size;
+ let size_q = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_attention_heads;
+ let size_kv = (cfg.hidden_size / cfg.num_attention_heads) * cfg.num_key_value_heads;
+ let q_proj = linear(size_in, size_q, vb.pp("q_proj"))?;
+ let k_proj = linear(size_in, size_kv, vb.pp("k_proj"))?;
+ let v_proj = linear(size_in, size_kv, vb.pp("v_proj"))?;
+ let o_proj = linear(size_q, size_in, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_attention_heads: cfg.num_attention_heads,
+ num_key_value_heads: cfg.num_key_value_heads,
+ head_dim: cfg.hidden_size / cfg.num_attention_heads,
+ cache: cache.clone(),
+ use_flash_attn: cfg.use_flash_attn,
+ span,
+ span_rot,
+ })
+ }
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+struct Mlp {
+ c_fc1: Linear,
+ c_fc2: Linear,
+ c_proj: Linear,
+ span: tracing::Span,
+}
+
+impl Mlp {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let x = (candle_nn::ops::silu(&self.c_fc1.forward(x)?)? * self.c_fc2.forward(x)?)?;
+ self.c_proj.forward(&x)
+ }
+
+ fn load(vb: VarBuilder, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "mlp");
+ let h_size = cfg.hidden_size;
+ let i_size = cfg.intermediate_size;
+ let c_fc1 = linear(h_size, i_size, vb.pp("gate_proj"))?;
+ let c_fc2 = linear(h_size, i_size, vb.pp("up_proj"))?;
+ let c_proj = linear(i_size, h_size, vb.pp("down_proj"))?;
+ Ok(Self {
+ c_fc1,
+ c_fc2,
+ c_proj,
+ span,
+ })
+ }
+}
+
+struct Block {
+ rms_1: RmsNorm,
+ attn: CausalSelfAttention,
+ rms_2: RmsNorm,
+ mlp: Mlp,
+ span: tracing::Span,
+}
+
+impl Block {
+ fn forward(&self, x: &Tensor, index_pos: usize, block_idx: usize) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let residual = x;
+ let x = self.rms_1.forward(x)?;
+ let x = (self.attn.forward(&x, index_pos, block_idx)? + residual)?;
+ let residual = &x;
+ let x = (self.mlp.forward(&self.rms_2.forward(&x)?)? + residual)?;
+ Ok(x)
+ }
+
+ fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "block");
+ let attn = CausalSelfAttention::load(vb.pp("self_attn"), cache, cfg)?;
+ let mlp = Mlp::load(vb.pp("mlp"), cfg)?;
+ let rms_1 = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let rms_2 = RmsNorm::load(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ rms_1,
+ attn,
+ rms_2,
+ mlp,
+ span,
+ })
+ }
+}
+
+pub struct Llama {
+ wte: Embedding,
+ blocks: Vec<Block>,
+ ln_f: RmsNorm,
+ lm_head: Linear,
+}
+
+impl Llama {
+ pub fn forward(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mut x = self.wte.forward(x)?;
+ for (block_idx, block) in self.blocks.iter().enumerate() {
+ x = block.forward(&x, index_pos, block_idx)?;
+ }
+ let x = self.ln_f.forward(&x)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let logits = self.lm_head.forward(&x)?;
+ logits.to_dtype(DType::F32)
+ }
+
+ pub fn load(vb: VarBuilder, cache: &Cache, cfg: &Config) -> Result<Self> {
+ let wte = embedding(cfg, vb.pp("model.embed_tokens"))?;
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ let ln_f = RmsNorm::load(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("model.norm"))?;
+ let blocks: Vec<_> = (0..cfg.num_hidden_layers)
+ .map(|i| Block::load(vb.pp(&format!("model.layers.{i}")), cache, cfg).unwrap())
+ .collect();
+
+ Ok(Self {
+ wte,
+ blocks,
+ ln_f,
+ lm_head,
+ })
+ }
+}