summaryrefslogtreecommitdiff
path: root/candle-transformers/src/models/phi.rs
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src/models/phi.rs')
-rw-r--r--candle-transformers/src/models/phi.rs363
1 files changed, 363 insertions, 0 deletions
diff --git a/candle-transformers/src/models/phi.rs b/candle-transformers/src/models/phi.rs
new file mode 100644
index 00000000..8bf357e7
--- /dev/null
+++ b/candle-transformers/src/models/phi.rs
@@ -0,0 +1,363 @@
+use crate::models::with_tracing::{layer_norm, linear, Embedding, LayerNorm, Linear};
+/// Phi model.
+/// https://huggingface.co/microsoft/phi-2
+/// There is an alternative implementation of the phi model in mixformers.rs.
+/// This corresponds to the model update made with the following commit:
+/// https://huggingface.co/microsoft/phi-2/commit/cb2f4533604d8b67de604e7df03bfe6f3ca22869
+use candle::{DType, Device, IndexOp, Module, Result, Tensor, D};
+use candle_nn::{Activation, VarBuilder};
+use serde::Deserialize;
+
+// https://huggingface.co/microsoft/phi-2/blob/main/configuration_phi.py
+#[derive(Debug, Clone, PartialEq, Deserialize)]
+pub struct Config {
+ pub(crate) vocab_size: usize,
+ pub(crate) hidden_size: usize,
+ pub(crate) intermediate_size: usize,
+ pub(crate) num_hidden_layers: usize,
+ pub(crate) num_attention_heads: usize,
+ pub(crate) num_key_value_heads: Option<usize>,
+ pub(crate) hidden_act: Activation,
+ pub(crate) max_position_embeddings: usize,
+ pub(crate) layer_norm_eps: f64,
+ pub(crate) tie_word_embeddings: bool,
+ pub(crate) rope_theta: f32,
+ pub(crate) partial_rotary_factor: f64,
+ pub(crate) qk_layernorm: bool,
+}
+
+impl Config {
+ fn num_key_value_heads(&self) -> usize {
+ self.num_key_value_heads.unwrap_or(self.num_attention_heads)
+ }
+
+ fn head_dim(&self) -> usize {
+ self.hidden_size / self.num_attention_heads
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ dim: usize,
+ sin: Tensor,
+ cos: Tensor,
+}
+
+impl RotaryEmbedding {
+ fn new(cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = (cfg.partial_rotary_factor * cfg.head_dim() as f64) as usize;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f32 / dim as f32))
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?;
+ let t = Tensor::arange(0u32, cfg.max_position_embeddings as u32, dev)?
+ .to_dtype(DType::F32)?
+ .reshape((cfg.max_position_embeddings, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let emb = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ Ok(Self {
+ dim,
+ sin: emb.sin()?,
+ cos: emb.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb(&self, xs: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (_b_size, _num_heads, seq_len, _headdim) = xs.dims4()?;
+ let xs_rot = xs.i((.., .., .., ..self.dim))?;
+ let xs_pass = xs.i((.., .., .., self.dim..))?;
+ let xs12 = xs_rot.chunk(2, D::Minus1)?;
+ let (xs1, xs2) = (&xs12[0], &xs12[1]);
+ let c = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let s = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let rotate_half = Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)?;
+ let xs_rot = (xs_rot.broadcast_mul(&c)? + rotate_half.broadcast_mul(&s)?)?;
+ Tensor::cat(&[&xs_rot, &xs_pass], D::Minus1)
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ fc1: Linear,
+ fc2: Linear,
+ act: Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let fc1 = linear(cfg.hidden_size, cfg.intermediate_size, vb.pp("fc1"))?;
+ let fc2 = linear(cfg.intermediate_size, cfg.hidden_size, vb.pp("fc2"))?;
+ Ok(Self {
+ fc1,
+ fc2,
+ // This does not match the mixformers implementation where Gelu is used rather than
+ // GeluNew.
+ act: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2)
+ }
+}
+
+#[derive(Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ dense: Linear,
+ kv_cache: Option<(Tensor, Tensor)>,
+ q_layernorm: Option<LayerNorm>,
+ k_layernorm: Option<LayerNorm>,
+ rotary_emb: RotaryEmbedding,
+ softmax_scale: f64,
+ num_heads: usize,
+ num_kv_heads: usize,
+ head_dim: usize,
+ span: tracing::Span,
+}
+
+fn get_mask(size: usize, device: &Device) -> Result<Tensor> {
+ let mask: Vec<_> = (0..size)
+ .flat_map(|i| (0..size).map(move |j| u8::from(j > i)))
+ .collect();
+ Tensor::from_slice(&mask, (size, size), device)
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+impl Attention {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads();
+ let head_dim = cfg.head_dim();
+ let q_proj = linear(cfg.hidden_size, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear(cfg.hidden_size, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let dense = linear(num_heads * head_dim, cfg.hidden_size, vb.pp("dense"))?;
+ // Alternative rope scalings are not supported.
+ let rotary_emb = RotaryEmbedding::new(cfg, vb.device())?;
+ let (q_layernorm, k_layernorm) = if cfg.qk_layernorm {
+ let q_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("q_layernorm"))?;
+ let k_layernorm = layer_norm(head_dim, cfg.layer_norm_eps, vb.pp("k_layernorm"))?;
+ (Some(q_layernorm), Some(k_layernorm))
+ } else {
+ (None, None)
+ };
+ let softmax_scale = 1f64 / (head_dim as f64).sqrt();
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ dense,
+ kv_cache: None,
+ q_layernorm,
+ k_layernorm,
+ rotary_emb,
+ softmax_scale,
+ num_heads,
+ num_kv_heads,
+ head_dim,
+ span: tracing::span!(tracing::Level::TRACE, "attention"),
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_heads / self.num_kv_heads;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b_size, seq_len, _n_embd) = xs.dims3()?;
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = match &self.q_layernorm {
+ None => query_states,
+ Some(ln) => query_states.apply(ln)?,
+ };
+ let key_states = match &self.k_layernorm {
+ None => key_states,
+ Some(ln) => key_states.apply(ln)?,
+ };
+
+ let query_states = query_states
+ .reshape((b_size, seq_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_size, seq_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ // Rotary embeddings.
+ let seqlen_offset = match &self.kv_cache {
+ None => 0,
+ Some((prev_k, _)) => prev_k.dim(2)?,
+ };
+ let query_states = self
+ .rotary_emb
+ .apply_rotary_emb(&query_states, seqlen_offset)?;
+ let key_states = self
+ .rotary_emb
+ .apply_rotary_emb(&key_states, seqlen_offset)?;
+
+ // KV cache.
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let k = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let v = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (k, v)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ // Repeat kv.
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_weights = (query_states
+ .to_dtype(DType::F32)?
+ .contiguous()?
+ .matmul(&key_states.to_dtype(DType::F32)?.t()?)?
+ * self.softmax_scale)?;
+ let attn_weights = match mask {
+ None => attn_weights,
+ Some(mask) => masked_fill(
+ &attn_weights,
+ &mask.broadcast_left((b_size, self.num_heads))?,
+ f32::NEG_INFINITY,
+ )?,
+ };
+ let attn_weights =
+ candle_nn::ops::softmax_last_dim(&attn_weights)?.to_dtype(value_states.dtype())?;
+ let attn_output = attn_weights.matmul(&value_states)?;
+ let attn_output = attn_output
+ .transpose(1, 2)?
+ .reshape((b_size, seq_len, ()))?;
+ attn_output.apply(&self.dense)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[derive(Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: LayerNorm,
+ span: tracing::Span,
+}
+
+impl DecoderLayer {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb.pp("input_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ span: tracing::span!(tracing::Level::TRACE, "block"),
+ })
+ }
+
+ fn forward(&mut self, xs: &Tensor, mask: Option<&Tensor>) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let residual = xs;
+ let xs = xs.apply(&self.input_layernorm)?;
+ let attn_outputs = self.self_attn.forward(&xs, mask)?;
+ let feed_forward_hidden_states = self.mlp.forward(&xs)?;
+ attn_outputs + feed_forward_hidden_states + residual
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Clone)]
+pub struct Model {
+ embed_tokens: Embedding,
+ layers: Vec<DecoderLayer>,
+ final_layernorm: LayerNorm,
+ lm_head: Linear,
+ span: tracing::Span,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ Embedding::new(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let final_layernorm = layer_norm(
+ cfg.hidden_size,
+ cfg.layer_norm_eps,
+ vb_m.pp("final_layernorm"),
+ )?;
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_m = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(cfg, vb_m.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let lm_head = linear(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ Ok(Self {
+ embed_tokens,
+ layers,
+ final_layernorm,
+ lm_head,
+ span: tracing::span!(tracing::Level::TRACE, "model"),
+ })
+ }
+
+ pub fn forward(&mut self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (_b_size, seq_len) = xs.dims2()?;
+ let mut xs = xs.apply(&self.embed_tokens)?;
+ let mask = if seq_len <= 1 {
+ None
+ } else {
+ Some(get_mask(seq_len, xs.device())?)
+ };
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, mask.as_ref())?;
+ }
+ xs.apply(&self.final_layernorm)?
+ .narrow(1, seq_len - 1, 1)?
+ .apply(&self.lm_head)?
+ .squeeze(1)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ self.layers.iter_mut().for_each(|b| b.clear_kv_cache())
+ }
+}