summaryrefslogtreecommitdiff
path: root/candle-transformers/src
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src')
-rw-r--r--candle-transformers/src/lib.rs1
-rw-r--r--candle-transformers/src/models/dinov2.rs279
-rw-r--r--candle-transformers/src/models/efficientnet.rs331
-rw-r--r--candle-transformers/src/models/mod.rs4
-rw-r--r--candle-transformers/src/models/quantized_llama.rs371
-rw-r--r--candle-transformers/src/models/segment_anything/image_encoder.rs483
-rw-r--r--candle-transformers/src/models/segment_anything/mask_decoder.rs239
-rw-r--r--candle-transformers/src/models/segment_anything/mod.rs100
-rw-r--r--candle-transformers/src/models/segment_anything/prompt_encoder.rs239
-rw-r--r--candle-transformers/src/models/segment_anything/sam.rs411
-rw-r--r--candle-transformers/src/models/segment_anything/tiny_vit.rs633
-rw-r--r--candle-transformers/src/models/segment_anything/transformer.rs221
-rw-r--r--candle-transformers/src/object_detection.rs52
13 files changed, 3364 insertions, 0 deletions
diff --git a/candle-transformers/src/lib.rs b/candle-transformers/src/lib.rs
index a8890dc8..b83e5056 100644
--- a/candle-transformers/src/lib.rs
+++ b/candle-transformers/src/lib.rs
@@ -1,4 +1,5 @@
pub mod generation;
pub mod models;
+pub mod object_detection;
pub mod pipelines;
pub mod utils;
diff --git a/candle-transformers/src/models/dinov2.rs b/candle-transformers/src/models/dinov2.rs
new file mode 100644
index 00000000..0edc8494
--- /dev/null
+++ b/candle-transformers/src/models/dinov2.rs
@@ -0,0 +1,279 @@
+use candle::{IndexOp, Result, Tensor, D};
+use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+
+const IMG_SIZE: usize = 518;
+const PATCH_SIZE: usize = 14;
+const NUM_CLASSES: usize = 1000;
+
+fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
+ if bias {
+ candle_nn::linear(in_dim, out_dim, vb)
+ } else {
+ candle_nn::linear_no_bias(in_dim, out_dim, vb)
+ }
+}
+
+#[derive(Debug)]
+struct Attention {
+ qkv: Linear,
+ proj: Linear,
+ num_heads: usize,
+ scale: f64,
+}
+
+impl Attention {
+ fn new(
+ vb: VarBuilder,
+ dim: usize,
+ num_heads: usize,
+ qkv_bias: bool,
+ proj_bias: bool,
+ ) -> Result<Self> {
+ let qkv = linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
+ let proj = linear(vb.pp("proj"), dim, dim, proj_bias)?;
+ let scale = 1. / ((dim / num_heads) as f64).sqrt();
+ Ok(Self {
+ qkv,
+ proj,
+ num_heads,
+ scale,
+ })
+ }
+}
+
+impl Module for Attention {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (b, n, c) = xs.dims3()?;
+ let qkv = self
+ .qkv
+ .forward(xs)?
+ .reshape((b, n, 3, self.num_heads, c / self.num_heads))?
+ .transpose(1, 2)? // 02134
+ .transpose(0, 1)? // 20134
+ .transpose(2, 3)?; // 20314
+ let q = (qkv.i(0)? * self.scale)?;
+ let k = qkv.i(1)?;
+ let v = qkv.i(2)?;
+ let attn = candle_nn::ops::softmax(&q.matmul(&k.t()?)?, D::Minus1)?;
+ let attn = attn.matmul(&v)?.transpose(1, 2)?.reshape((b, n, c))?;
+ self.proj.forward(&attn)
+ }
+}
+
+#[derive(Debug)]
+struct LayerScale {
+ gamma: Tensor,
+}
+
+impl LayerScale {
+ fn new(vb: VarBuilder, dim: usize) -> Result<Self> {
+ let gamma = vb.get(dim, "gamma")?;
+ Ok(Self { gamma })
+ }
+}
+
+impl Module for LayerScale {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ xs.broadcast_mul(&self.gamma)
+ }
+}
+
+#[derive(Debug)]
+struct Mlp {
+ fc1: Linear,
+ fc2: Linear,
+}
+
+impl Mlp {
+ fn new(vb: VarBuilder, in_features: usize, hidden_features: usize, bias: bool) -> Result<Self> {
+ let out_features = in_features;
+ let fc1 = linear(vb.pp("fc1"), in_features, hidden_features, bias)?;
+ let fc2 = linear(vb.pp("fc2"), hidden_features, out_features, bias)?;
+ Ok(Self { fc1, fc2 })
+ }
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.fc1.forward(xs)?.gelu()?;
+ self.fc2.forward(&xs)
+ }
+}
+
+#[derive(Debug)]
+struct Block {
+ norm1: LayerNorm,
+ attn: Attention,
+ ls1: LayerScale,
+ norm2: LayerNorm,
+ mlp: Mlp,
+ ls2: LayerScale,
+}
+
+impl Block {
+ fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> {
+ let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?;
+ let attn = Attention::new(vb.pp("attn"), dim, num_heads, true, true)?;
+ let ls1 = LayerScale::new(vb.pp("ls1"), dim)?;
+ let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?;
+ let mlp = Mlp::new(vb.pp("mlp"), dim, dim * 4, true)?;
+ let ls2 = LayerScale::new(vb.pp("ls2"), dim)?;
+ Ok(Self {
+ norm1,
+ attn,
+ ls1,
+ norm2,
+ mlp,
+ ls2,
+ })
+ }
+}
+
+impl Module for Block {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self
+ .ls1
+ .forward(&self.attn.forward(&self.norm1.forward(xs)?)?)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = self
+ .ls2
+ .forward(&self.mlp.forward(&self.norm2.forward(&xs)?)?)?;
+ xs + residual
+ }
+}
+
+#[derive(Debug)]
+struct PatchEmbed {
+ proj: candle_nn::Conv2d,
+ patch_size: (usize, usize),
+ num_patches: usize,
+}
+
+impl PatchEmbed {
+ fn new(
+ vb: VarBuilder,
+ img_size: usize,
+ patch_size: usize,
+ in_chans: usize,
+ embed_dim: usize,
+ ) -> Result<Self> {
+ let config = candle_nn::Conv2dConfig {
+ stride: patch_size,
+ ..Default::default()
+ };
+ let proj = candle_nn::conv2d(in_chans, embed_dim, patch_size, config, vb.pp("proj"))?;
+ let num_patches = (img_size / patch_size) * (img_size / patch_size);
+ Ok(Self {
+ proj,
+ patch_size: (patch_size, patch_size),
+ num_patches,
+ })
+ }
+}
+
+impl Module for PatchEmbed {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b, _c, h, w) = xs.dims4()?;
+ let (patch_h, patch_w) = self.patch_size;
+ if (h % patch_h) != 0 {
+ candle::bail!("image height {h} is not a multiple of patch height {patch_h}")
+ }
+ if (w % patch_w) != 0 {
+ candle::bail!("image width {w} is not a multiple of patch width {patch_w}")
+ }
+ let xs = self.proj.forward(xs)?;
+ let (b, c, h, w) = xs.dims4()?;
+ // flatten embeddings.
+ xs.reshape((b, c, h * w))?.transpose(1, 2)
+ }
+}
+
+#[derive(Debug)]
+pub struct DinoVisionTransformer {
+ patch_embed: PatchEmbed,
+ cls_token: Tensor,
+ pos_embed: Tensor,
+ blocks: Vec<Block>,
+ norm: LayerNorm,
+ head: Linear,
+}
+
+impl DinoVisionTransformer {
+ pub fn new(vb: VarBuilder, depth: usize, embed_dim: usize, num_heads: usize) -> Result<Self> {
+ let patch_embed =
+ PatchEmbed::new(vb.pp("patch_embed"), IMG_SIZE, PATCH_SIZE, 3, embed_dim)?;
+ let cls_token = vb.get((1, 1, embed_dim), "cls_token")?;
+ let num_tokens = 1;
+ let pos_embed = vb.get(
+ (1, patch_embed.num_patches + num_tokens, embed_dim),
+ "pos_embed",
+ )?;
+ let head = linear(vb.pp("head"), 2 * embed_dim, NUM_CLASSES, true)?;
+ let norm = layer_norm(embed_dim, 1e-5, vb.pp("norm"))?;
+ let vb_b = vb.pp("blocks");
+ let blocks = (0..depth)
+ .map(|i| Block::new(vb_b.pp(&i.to_string()), embed_dim, num_heads))
+ .collect::<Result<Vec<_>>>()?;
+ Ok(Self {
+ patch_embed,
+ cls_token,
+ pos_embed,
+ blocks,
+ norm,
+ head,
+ })
+ }
+
+ fn interpolate_pos_encoding(&self, xs: &Tensor, w: usize, h: usize) -> Result<Tensor> {
+ let npatch = xs.dim(1)? - 1;
+ let n = self.pos_embed.dim(1)? - 1;
+ let sqrt_n = (n as f64).sqrt();
+ if npatch == n && w == h {
+ return Ok(xs.clone());
+ }
+ let class_pos_embed = self.pos_embed.i((.., ..1))?;
+ let patch_pos_embed = self.pos_embed.i((.., 1..))?;
+ let dim = xs.dim(D::Minus1)?;
+ let (w0, h0) = ((w / PATCH_SIZE) as f64 + 0.1, (h / PATCH_SIZE) as f64 + 0.1);
+ let patch_pos_embed = patch_pos_embed
+ .reshape((1, sqrt_n as usize, sqrt_n as usize, dim))?
+ .transpose(2, 3)?
+ .transpose(1, 2)?;
+ // This uses bicubic interpolation in the original implementation.
+ let patch_pos_embed = patch_pos_embed.upsample_nearest2d(h0 as usize, w0 as usize)?;
+ let el_count = patch_pos_embed.shape().elem_count();
+ let patch_pos_embed =
+ patch_pos_embed
+ .transpose(1, 2)?
+ .transpose(2, 3)?
+ .reshape((1, el_count / dim, dim))?;
+ Tensor::cat(&[&class_pos_embed, &patch_pos_embed], 1)
+ }
+
+ fn prepare_tokens_with_mask(&self, xs: &Tensor) -> Result<Tensor> {
+ let (_b, _nc, w, h) = xs.dims4()?;
+ let xs = self.patch_embed.forward(xs)?;
+ let xs = Tensor::cat(&[&self.cls_token, &xs], 1)?;
+ &xs + &self.interpolate_pos_encoding(&xs, w, h)?
+ }
+}
+
+impl Module for DinoVisionTransformer {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut xs = self.prepare_tokens_with_mask(xs)?;
+ for blk in self.blocks.iter() {
+ xs = blk.forward(&xs)?
+ }
+ let xs = self.norm.forward(&xs)?;
+ let xs_norm_clstoken = xs.i((.., 0))?;
+ let xs_norm_patchtokens = xs.i((.., 1..))?.mean(1)?;
+ let xs = Tensor::cat(&[xs_norm_clstoken, xs_norm_patchtokens], D::Minus1)?;
+ self.head.forward(&xs)
+ }
+}
+
+pub fn vit_small(vb: VarBuilder) -> Result<DinoVisionTransformer> {
+ DinoVisionTransformer::new(vb, 12, 384, 6)
+}
diff --git a/candle-transformers/src/models/efficientnet.rs b/candle-transformers/src/models/efficientnet.rs
new file mode 100644
index 00000000..ab51c76d
--- /dev/null
+++ b/candle-transformers/src/models/efficientnet.rs
@@ -0,0 +1,331 @@
+use candle::{Result, Tensor, D};
+use candle_nn as nn;
+use nn::{Module, VarBuilder};
+
+// Based on the Python version from torchvision.
+// https://github.com/pytorch/vision/blob/0d75d9e5516f446c9c0ef93bd4ed9fea13992d06/torchvision/models/efficientnet.py#L47
+#[derive(Debug, Clone, Copy)]
+pub struct MBConvConfig {
+ expand_ratio: f64,
+ kernel: usize,
+ stride: usize,
+ input_channels: usize,
+ out_channels: usize,
+ num_layers: usize,
+}
+
+fn make_divisible(v: f64, divisor: usize) -> usize {
+ let min_value = divisor;
+ let new_v = usize::max(
+ min_value,
+ (v + divisor as f64 * 0.5) as usize / divisor * divisor,
+ );
+ if (new_v as f64) < 0.9 * v {
+ new_v + divisor
+ } else {
+ new_v
+ }
+}
+
+fn bneck_confs(width_mult: f64, depth_mult: f64) -> Vec<MBConvConfig> {
+ let bneck_conf = |e, k, s, i, o, n| {
+ let input_channels = make_divisible(i as f64 * width_mult, 8);
+ let out_channels = make_divisible(o as f64 * width_mult, 8);
+ let num_layers = (n as f64 * depth_mult).ceil() as usize;
+ MBConvConfig {
+ expand_ratio: e,
+ kernel: k,
+ stride: s,
+ input_channels,
+ out_channels,
+ num_layers,
+ }
+ };
+ vec![
+ bneck_conf(1., 3, 1, 32, 16, 1),
+ bneck_conf(6., 3, 2, 16, 24, 2),
+ bneck_conf(6., 5, 2, 24, 40, 2),
+ bneck_conf(6., 3, 2, 40, 80, 3),
+ bneck_conf(6., 5, 1, 80, 112, 3),
+ bneck_conf(6., 5, 2, 112, 192, 4),
+ bneck_conf(6., 3, 1, 192, 320, 1),
+ ]
+}
+
+impl MBConvConfig {
+ pub fn b0() -> Vec<Self> {
+ bneck_confs(1.0, 1.0)
+ }
+ pub fn b1() -> Vec<Self> {
+ bneck_confs(1.0, 1.1)
+ }
+ pub fn b2() -> Vec<Self> {
+ bneck_confs(1.1, 1.2)
+ }
+ pub fn b3() -> Vec<Self> {
+ bneck_confs(1.2, 1.4)
+ }
+ pub fn b4() -> Vec<Self> {
+ bneck_confs(1.4, 1.8)
+ }
+ pub fn b5() -> Vec<Self> {
+ bneck_confs(1.6, 2.2)
+ }
+ pub fn b6() -> Vec<Self> {
+ bneck_confs(1.8, 2.6)
+ }
+ pub fn b7() -> Vec<Self> {
+ bneck_confs(2.0, 3.1)
+ }
+}
+
+/// Conv2D with same padding.
+#[derive(Debug)]
+struct Conv2DSame {
+ conv2d: nn::Conv2d,
+ s: usize,
+ k: usize,
+}
+
+impl Conv2DSame {
+ fn new(
+ vb: VarBuilder,
+ i: usize,
+ o: usize,
+ k: usize,
+ stride: usize,
+ groups: usize,
+ bias: bool,
+ ) -> Result<Self> {
+ let conv_config = nn::Conv2dConfig {
+ stride,
+ groups,
+ ..Default::default()
+ };
+ let conv2d = if bias {
+ nn::conv2d(i, o, k, conv_config, vb)?
+ } else {
+ nn::conv2d_no_bias(i, o, k, conv_config, vb)?
+ };
+ Ok(Self {
+ conv2d,
+ s: stride,
+ k,
+ })
+ }
+}
+
+impl Module for Conv2DSame {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let s = self.s;
+ let k = self.k;
+ let (_, _, ih, iw) = xs.dims4()?;
+ let oh = (ih + s - 1) / s;
+ let ow = (iw + s - 1) / s;
+ let pad_h = usize::max((oh - 1) * s + k - ih, 0);
+ let pad_w = usize::max((ow - 1) * s + k - iw, 0);
+ if pad_h > 0 || pad_w > 0 {
+ let xs = xs.pad_with_zeros(2, pad_h / 2, pad_h - pad_h / 2)?;
+ let xs = xs.pad_with_zeros(3, pad_w / 2, pad_w - pad_w / 2)?;
+ self.conv2d.forward(&xs)
+ } else {
+ self.conv2d.forward(xs)
+ }
+ }
+}
+
+#[derive(Debug)]
+struct ConvNormActivation {
+ conv2d: Conv2DSame,
+ bn2d: nn::BatchNorm,
+ activation: bool,
+}
+
+impl ConvNormActivation {
+ fn new(
+ vb: VarBuilder,
+ i: usize,
+ o: usize,
+ k: usize,
+ stride: usize,
+ groups: usize,
+ ) -> Result<Self> {
+ let conv2d = Conv2DSame::new(vb.pp("0"), i, o, k, stride, groups, false)?;
+ let bn2d = nn::batch_norm(o, 1e-3, vb.pp("1"))?;
+ Ok(Self {
+ conv2d,
+ bn2d,
+ activation: true,
+ })
+ }
+
+ fn no_activation(self) -> Self {
+ Self {
+ activation: false,
+ ..self
+ }
+ }
+}
+
+impl Module for ConvNormActivation {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let xs = self.conv2d.forward(xs)?;
+ let xs = self.bn2d.forward(&xs)?;
+ if self.activation {
+ swish(&xs)
+ } else {
+ Ok(xs)
+ }
+ }
+}
+
+#[derive(Debug)]
+struct SqueezeExcitation {
+ fc1: Conv2DSame,
+ fc2: Conv2DSame,
+}
+
+impl SqueezeExcitation {
+ fn new(vb: VarBuilder, in_channels: usize, squeeze_channels: usize) -> Result<Self> {
+ let fc1 = Conv2DSame::new(vb.pp("fc1"), in_channels, squeeze_channels, 1, 1, 1, true)?;
+ let fc2 = Conv2DSame::new(vb.pp("fc2"), squeeze_channels, in_channels, 1, 1, 1, true)?;
+ Ok(Self { fc1, fc2 })
+ }
+}
+
+impl Module for SqueezeExcitation {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let residual = xs;
+ // equivalent to adaptive_avg_pool2d([1, 1])
+ let xs = xs.mean_keepdim(D::Minus2)?.mean_keepdim(D::Minus1)?;
+ let xs = self.fc1.forward(&xs)?;
+ let xs = swish(&xs)?;
+ let xs = self.fc2.forward(&xs)?;
+ let xs = nn::ops::sigmoid(&xs)?;
+ residual.broadcast_mul(&xs)
+ }
+}
+
+#[derive(Debug)]
+struct MBConv {
+ expand_cna: Option<ConvNormActivation>,
+ depthwise_cna: ConvNormActivation,
+ squeeze_excitation: SqueezeExcitation,
+ project_cna: ConvNormActivation,
+ config: MBConvConfig,
+}
+
+impl MBConv {
+ fn new(vb: VarBuilder, c: MBConvConfig) -> Result<Self> {
+ let vb = vb.pp("block");
+ let exp = make_divisible(c.input_channels as f64 * c.expand_ratio, 8);
+ let expand_cna = if exp != c.input_channels {
+ Some(ConvNormActivation::new(
+ vb.pp("0"),
+ c.input_channels,
+ exp,
+ 1,
+ 1,
+ 1,
+ )?)
+ } else {
+ None
+ };
+ let start_index = if expand_cna.is_some() { 1 } else { 0 };
+ let depthwise_cna =
+ ConvNormActivation::new(vb.pp(start_index), exp, exp, c.kernel, c.stride, exp)?;
+ let squeeze_channels = usize::max(1, c.input_channels / 4);
+ let squeeze_excitation =
+ SqueezeExcitation::new(vb.pp(start_index + 1), exp, squeeze_channels)?;
+ let project_cna =
+ ConvNormActivation::new(vb.pp(start_index + 2), exp, c.out_channels, 1, 1, 1)?
+ .no_activation();
+ Ok(Self {
+ expand_cna,
+ depthwise_cna,
+ squeeze_excitation,
+ project_cna,
+ config: c,
+ })
+ }
+}
+
+impl Module for MBConv {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let use_res_connect =
+ self.config.stride == 1 && self.config.input_channels == self.config.out_channels;
+ let ys = match &self.expand_cna {
+ Some(expand_cna) => expand_cna.forward(xs)?,
+ None => xs.clone(),
+ };
+ let ys = self.depthwise_cna.forward(&ys)?;
+ let ys = self.squeeze_excitation.forward(&ys)?;
+ let ys = self.project_cna.forward(&ys)?;
+ if use_res_connect {
+ ys + xs
+ } else {
+ Ok(ys)
+ }
+ }
+}
+
+fn swish(s: &Tensor) -> Result<Tensor> {
+ s * nn::ops::sigmoid(s)?
+}
+
+#[derive(Debug)]
+pub struct EfficientNet {
+ init_cna: ConvNormActivation,
+ blocks: Vec<MBConv>,
+ final_cna: ConvNormActivation,
+ classifier: nn::Linear,
+}
+
+impl EfficientNet {
+ pub fn new(p: VarBuilder, configs: Vec<MBConvConfig>, nclasses: usize) -> Result<Self> {
+ let f_p = p.pp("features");
+ let first_in_c = configs[0].input_channels;
+ let last_out_c = configs.last().unwrap().out_channels;
+ let final_out_c = 4 * last_out_c;
+ let init_cna = ConvNormActivation::new(f_p.pp(0), 3, first_in_c, 3, 2, 1)?;
+ let nconfigs = configs.len();
+ let mut blocks = vec![];
+ for (index, cnf) in configs.into_iter().enumerate() {
+ let f_p = f_p.pp(index + 1);
+ for r_index in 0..cnf.num_layers {
+ let cnf = if r_index == 0 {
+ cnf
+ } else {
+ MBConvConfig {
+ input_channels: cnf.out_channels,
+ stride: 1,
+ ..cnf
+ }
+ };
+ blocks.push(MBConv::new(f_p.pp(r_index), cnf)?)
+ }
+ }
+ let final_cna =
+ ConvNormActivation::new(f_p.pp(nconfigs + 1), last_out_c, final_out_c, 1, 1, 1)?;
+ let classifier = nn::linear(final_out_c, nclasses, p.pp("classifier.1"))?;
+ Ok(Self {
+ init_cna,
+ blocks,
+ final_cna,
+ classifier,
+ })
+ }
+}
+
+impl Module for EfficientNet {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let mut xs = self.init_cna.forward(xs)?;
+ for block in self.blocks.iter() {
+ xs = block.forward(&xs)?
+ }
+ let xs = self.final_cna.forward(&xs)?;
+ // Equivalent to adaptive_avg_pool2d([1, 1]) -> squeeze(-1) -> squeeze(-1)
+ let xs = xs.mean(D::Minus1)?.mean(D::Minus1)?;
+ self.classifier.forward(&xs)
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 1b3dcf25..76e13b2a 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -1,5 +1,9 @@
pub mod bert;
pub mod bigcode;
+pub mod dinov2;
+pub mod efficientnet;
pub mod falcon;
pub mod llama;
+pub mod quantized_llama;
+pub mod segment_anything;
pub mod whisper;
diff --git a/candle-transformers/src/models/quantized_llama.rs b/candle-transformers/src/models/quantized_llama.rs
new file mode 100644
index 00000000..da0bd0b0
--- /dev/null
+++ b/candle-transformers/src/models/quantized_llama.rs
@@ -0,0 +1,371 @@
+use std::collections::HashMap;
+
+use candle::quantized::QTensor;
+use candle::quantized::{ggml_file, gguf_file};
+use candle::{DType, Device, IndexOp, Result, Tensor, D};
+use candle_nn::{Embedding, Module};
+
+pub const MAX_SEQ_LEN: usize = 4096;
+
+struct RmsNorm {
+ inner: candle_nn::LayerNorm,
+ span: tracing::Span,
+}
+
+impl RmsNorm {
+ fn new(scale: QTensor, eps: f32) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "rms-norm");
+ let scale = scale.dequantize(&Device::Cpu)?;
+ let inner = candle_nn::LayerNorm::rms_norm(scale, eps as f64);
+ Ok(Self { inner, span })
+ }
+
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
+
+// QMatMul wrapper adding some tracing.
+struct QMatMul {
+ inner: candle::quantized::QMatMul,
+ span: tracing::Span,
+}
+
+impl QMatMul {
+ fn from_qtensor(qtensor: QTensor) -> Self {
+ let inner = candle::quantized::QMatMul::from_qtensor(qtensor);
+ let span = tracing::span!(tracing::Level::TRACE, "qmatmul");
+ Self { inner, span }
+ }
+
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(xs)
+ }
+}
+
+struct LayerWeights {
+ attention_wq: QMatMul,
+ attention_wk: QMatMul,
+ attention_wv: QMatMul,
+ attention_wo: QMatMul,
+ attention_norm: RmsNorm,
+ feed_forward_w1: QMatMul,
+ feed_forward_w2: QMatMul,
+ feed_forward_w3: QMatMul,
+ ffn_norm: RmsNorm,
+ n_head: usize,
+ n_kv_head: usize,
+ head_dim: usize,
+ cos: Tensor,
+ sin: Tensor,
+ kv_cache: Option<(Tensor, Tensor)>,
+ span_attn: tracing::Span,
+ span_rot: tracing::Span,
+ span_mlp: tracing::Span,
+}
+
+fn masked_fill(on_false: &Tensor, mask: &Tensor, on_true: f32) -> Result<Tensor> {
+ let shape = mask.shape();
+ let on_true = Tensor::new(on_true, on_false.device())?.broadcast_as(shape.dims())?;
+ let m = mask.where_cond(&on_true, on_false)?;
+ Ok(m)
+}
+
+impl LayerWeights {
+ fn apply_rotary_emb(&self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_rot.enter();
+ let (b_sz, n_head, seq_len, n_embd) = x.dims4()?;
+ let cos = self
+ .cos
+ .narrow(0, index_pos, seq_len)?
+ .reshape((seq_len, n_embd / 2, 1))?;
+ let sin = self
+ .sin
+ .narrow(0, index_pos, seq_len)?
+ .reshape((seq_len, n_embd / 2, 1))?;
+ let cos = cos.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
+ let sin = sin.broadcast_as((b_sz, 1, seq_len, n_embd / 2, 1))?;
+ // This mimics the llama.cpp behavior.
+ // https://github.com/ggerganov/llama.cpp/blob/1f0bccb27929e261744c979bc75114955da49e98/ggml.c#L12104-L12105
+ // The x0 and x1 value are interleaved on the n_embd (= head_dim) dimension.
+ // The resulting y0 and y1 are also interleaved with:
+ // y0 = x0*cos - x1*sin
+ // y1 = x0*sin + x1*cos
+ let x = x.reshape((b_sz, n_head, seq_len, n_embd / 2, 2))?;
+ let x0 = x.narrow(D::Minus1, 0, 1)?;
+ let x1 = x.narrow(D::Minus1, 1, 1)?;
+ let y0 = (x0.broadcast_mul(&cos)? - x1.broadcast_mul(&sin)?)?;
+ let y1 = (x0.broadcast_mul(&sin)? + x1.broadcast_mul(&cos)?)?;
+ let rope = Tensor::cat(&[y0, y1], D::Minus1)?;
+ let rope = rope.flatten_from(D::Minus2)?;
+ Ok(rope)
+ }
+
+ fn forward_attn(&mut self, x: &Tensor, mask: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let _enter = self.span_attn.enter();
+ let (b_sz, seq_len, n_embd) = x.dims3()?;
+ let q = self.attention_wq.forward(x)?;
+ let k = self.attention_wk.forward(x)?;
+ let v = self.attention_wv.forward(x)?;
+
+ let q = q
+ .reshape((b_sz, seq_len, self.n_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let k = k
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?;
+ let v = v
+ .reshape((b_sz, seq_len, self.n_kv_head, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let q = self.apply_rotary_emb(&q, index_pos)?;
+ let k = self.apply_rotary_emb(&k, index_pos)?;
+
+ let (k, v) = match &self.kv_cache {
+ None => (k, v),
+ Some((k_cache, v_cache)) => {
+ if index_pos == 0 {
+ (k, v)
+ } else {
+ let k = Tensor::cat(&[k_cache, &k], 2)?.contiguous()?;
+ let v = Tensor::cat(&[v_cache, &v], 2)?.contiguous()?;
+ (k, v)
+ }
+ }
+ };
+ self.kv_cache = Some((k.clone(), v.clone()));
+
+ // Support for MQA, useful for 70B models.
+ let k = self.repeat_kv(k)?;
+ let v = self.repeat_kv(v)?;
+
+ let att = (q.matmul(&k.t()?)? / (self.head_dim as f64).sqrt())?;
+ let mask = mask.broadcast_as(att.shape())?;
+ let att = masked_fill(&att, &mask, f32::NEG_INFINITY)?;
+ let att = candle_nn::ops::softmax(&att, D::Minus1)?;
+ // Convert to contiguous as matmul doesn't support strided vs for now.
+ let y = att.matmul(&v.contiguous()?)?;
+ let y = y.transpose(1, 2)?.reshape(&[b_sz, seq_len, n_embd])?;
+ let y = self.attention_wo.forward(&y)?;
+ Ok(y)
+ }
+
+ fn repeat_kv(&self, x: Tensor) -> Result<Tensor> {
+ let n_rep = self.n_head / self.n_kv_head;
+ if n_rep == 1 {
+ Ok(x)
+ } else {
+ let (b_sz, n_kv_head, seq_len, head_dim) = x.dims4()?;
+ let x = x
+ .unsqueeze(2)?
+ .expand((b_sz, n_kv_head, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, n_kv_head * n_rep, seq_len, head_dim))?;
+ Ok(x)
+ }
+ }
+}
+
+pub struct ModelWeights {
+ tok_embeddings: Embedding,
+ layers: Vec<LayerWeights>,
+ norm: RmsNorm,
+ output: QMatMul,
+ masks: HashMap<usize, Tensor>,
+ span: tracing::Span,
+ span_output: tracing::Span,
+}
+
+fn precomput_freqs_cis(head_dim: usize, freq_base: f32) -> Result<(Tensor, Tensor)> {
+ let theta: Vec<_> = (0..head_dim)
+ .step_by(2)
+ .map(|i| 1f32 / freq_base.powf(i as f32 / head_dim as f32))
+ .collect();
+ let theta = Tensor::new(theta.as_slice(), &Device::Cpu)?;
+ let idx_theta = Tensor::arange(0, MAX_SEQ_LEN as u32, &Device::Cpu)?
+ .to_dtype(DType::F32)?
+ .reshape((MAX_SEQ_LEN, 1))?
+ .matmul(&theta.reshape((1, theta.elem_count()))?)?;
+ let cos = idx_theta.cos()?;
+ let sin = idx_theta.sin()?;
+ Ok((cos, sin))
+}
+
+impl ModelWeights {
+ pub fn from_ggml(mut ct: ggml_file::Content, gqa: usize) -> Result<Self> {
+ let cpu = &Device::Cpu;
+ let head_dim = (ct.hparams.n_embd / ct.hparams.n_head) as usize;
+ let (cos, sin) = precomput_freqs_cis(head_dim, 10000.)?;
+ let tok_embeddings = ct.remove("tok_embeddings.weight")?;
+ let tok_embeddings = tok_embeddings.dequantize(cpu)?;
+ let norm = RmsNorm::new(ct.remove("norm.weight")?, 1e-5)?;
+ let output = ct.remove("output.weight")?;
+ let mut layers = Vec::with_capacity(ct.hparams.n_layer as usize);
+ for layer_idx in 0..ct.hparams.n_layer {
+ let prefix = format!("layers.{layer_idx}");
+ let attention_wq = ct.remove(&format!("{prefix}.attention.wq.weight"))?;
+ let attention_wk = ct.remove(&format!("{prefix}.attention.wk.weight"))?;
+ let attention_wv = ct.remove(&format!("{prefix}.attention.wv.weight"))?;
+ let attention_wo = ct.remove(&format!("{prefix}.attention.wo.weight"))?;
+ let feed_forward_w1 = ct.remove(&format!("{prefix}.feed_forward.w1.weight"))?;
+ let feed_forward_w2 = ct.remove(&format!("{prefix}.feed_forward.w2.weight"))?;
+ let feed_forward_w3 = ct.remove(&format!("{prefix}.feed_forward.w3.weight"))?;
+ let attention_norm = ct.remove(&format!("{prefix}.attention_norm.weight"))?;
+ let ffn_norm = ct.remove(&format!("{prefix}.ffn_norm.weight"))?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
+ layers.push(LayerWeights {
+ attention_wq: QMatMul::from_qtensor(attention_wq),
+ attention_wk: QMatMul::from_qtensor(attention_wk),
+ attention_wv: QMatMul::from_qtensor(attention_wv),
+ attention_wo: QMatMul::from_qtensor(attention_wo),
+ attention_norm: RmsNorm::new(attention_norm, 1e-5)?,
+ feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
+ feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
+ feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
+ ffn_norm: RmsNorm::new(ffn_norm, 1e-5)?,
+ n_head: ct.hparams.n_head as usize,
+ n_kv_head: ct.hparams.n_head as usize / gqa,
+ head_dim: (ct.hparams.n_embd / ct.hparams.n_head) as usize,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ span_mlp,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, ct.hparams.n_embd as usize),
+ layers,
+ norm,
+ output: QMatMul::from_qtensor(output),
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ pub fn from_gguf<R: std::io::Seek + std::io::Read>(
+ ct: gguf_file::Content,
+ reader: &mut R,
+ ) -> Result<Self> {
+ let cpu = &Device::Cpu;
+ let md_get = |s: &str| match ct.metadata.get(s) {
+ None => candle::bail!("cannot find {s} in metadata"),
+ Some(v) => Ok(v),
+ };
+
+ // Parameter extraction from metadata.
+ let head_count = md_get("llama.attention.head_count")?.to_u32()? as usize;
+ let head_count_kv = md_get("llama.attention.head_count_kv")?.to_u32()? as usize;
+ let block_count = md_get("llama.block_count")?.to_u32()? as usize;
+ let embedding_length = md_get("llama.embedding_length")?.to_u32()? as usize;
+ let rope_dim = md_get("llama.rope.dimension_count")?.to_u32()? as usize;
+ // Strangely this value is generally 1e-6 in GGUF file but used to be 1e-5 by default.
+ let rms_norm_eps = md_get("llama.attention.layer_norm_rms_epsilon")?.to_f32()?;
+
+ let rope_freq_base = md_get("llama.rope.freq_base")
+ .and_then(|m| m.to_f32())
+ .unwrap_or(10000f32);
+ let (cos, sin) = precomput_freqs_cis(rope_dim, rope_freq_base)?;
+
+ let tok_embeddings = ct.tensor(reader, "token_embd.weight")?;
+ let tok_embeddings = tok_embeddings.dequantize(cpu)?;
+ let norm = RmsNorm::new(ct.tensor(reader, "output_norm.weight")?, rms_norm_eps)?;
+ let output = ct.tensor(reader, "output.weight")?;
+ let mut layers = Vec::with_capacity(block_count);
+ for layer_idx in 0..block_count {
+ let prefix = format!("blk.{layer_idx}");
+ let attention_wq = ct.tensor(reader, &format!("{prefix}.attn_q.weight"))?;
+ let attention_wk = ct.tensor(reader, &format!("{prefix}.attn_k.weight"))?;
+ let attention_wv = ct.tensor(reader, &format!("{prefix}.attn_v.weight"))?;
+ let attention_wo = ct.tensor(reader, &format!("{prefix}.attn_output.weight"))?;
+ let feed_forward_w1 = ct.tensor(reader, &format!("{prefix}.ffn_gate.weight"))?;
+ let feed_forward_w2 = ct.tensor(reader, &format!("{prefix}.ffn_down.weight"))?;
+ let feed_forward_w3 = ct.tensor(reader, &format!("{prefix}.ffn_up.weight"))?;
+ let attention_norm = ct.tensor(reader, &format!("{prefix}.attn_norm.weight"))?;
+ let ffn_norm = ct.tensor(reader, &format!("{prefix}.ffn_norm.weight"))?;
+ let span_attn = tracing::span!(tracing::Level::TRACE, "attn");
+ let span_rot = tracing::span!(tracing::Level::TRACE, "attn-rot");
+ let span_mlp = tracing::span!(tracing::Level::TRACE, "attn-mlp");
+ layers.push(LayerWeights {
+ attention_wq: QMatMul::from_qtensor(attention_wq),
+ attention_wk: QMatMul::from_qtensor(attention_wk),
+ attention_wv: QMatMul::from_qtensor(attention_wv),
+ attention_wo: QMatMul::from_qtensor(attention_wo),
+ attention_norm: RmsNorm::new(attention_norm, rms_norm_eps)?,
+ feed_forward_w1: QMatMul::from_qtensor(feed_forward_w1),
+ feed_forward_w2: QMatMul::from_qtensor(feed_forward_w2),
+ feed_forward_w3: QMatMul::from_qtensor(feed_forward_w3),
+ ffn_norm: RmsNorm::new(ffn_norm, rms_norm_eps)?,
+ n_head: head_count,
+ n_kv_head: head_count_kv,
+ head_dim: embedding_length / head_count,
+ cos: cos.clone(),
+ sin: sin.clone(),
+ kv_cache: None,
+ span_attn,
+ span_rot,
+ span_mlp,
+ })
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "model");
+ let span_output = tracing::span!(tracing::Level::TRACE, "output");
+ Ok(Self {
+ tok_embeddings: Embedding::new(tok_embeddings, embedding_length),
+ layers,
+ norm,
+ output: QMatMul::from_qtensor(output),
+ masks: HashMap::new(),
+ span,
+ span_output,
+ })
+ }
+
+ fn mask(&mut self, t: usize) -> Result<Tensor> {
+ if let Some(mask) = self.masks.get(&t) {
+ Ok(mask.clone())
+ } else {
+ let mask: Vec<_> = (0..t)
+ .flat_map(|i| (0..t).map(move |j| u8::from(j > i)))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (t, t), &Device::Cpu)?;
+ self.masks.insert(t, mask.clone());
+ Ok(mask)
+ }
+ }
+
+ pub fn forward(&mut self, x: &Tensor, index_pos: usize) -> Result<Tensor> {
+ let (_b_sz, seq_len) = x.dims2()?;
+ let mask = self.mask(seq_len)?;
+ let _enter = self.span.enter();
+ let mut layer_in = self.tok_embeddings.forward(x)?;
+ for layer in self.layers.iter_mut() {
+ let x = layer_in;
+ let residual = &x;
+ let x = layer.attention_norm.forward(&x)?;
+ let attn = layer.forward_attn(&x, &mask, index_pos)?;
+ let x = (attn + residual)?;
+
+ // MLP
+ let _enter = layer.span_mlp.enter();
+ let residual = &x;
+ let x = layer.ffn_norm.forward(&x)?;
+ let w1 = layer.feed_forward_w1.forward(&x)?;
+ let w3 = layer.feed_forward_w3.forward(&x)?;
+ let mlp = layer
+ .feed_forward_w2
+ .forward(&(candle_nn::ops::silu(&w1)? * w3)?)?;
+ layer_in = (mlp + residual)?;
+ }
+ let x = self.norm.forward(&layer_in)?;
+ let x = x.i((.., seq_len - 1, ..))?;
+ let _enter = self.span_output.enter();
+ self.output.forward(&x)
+ }
+}
diff --git a/candle-transformers/src/models/segment_anything/image_encoder.rs b/candle-transformers/src/models/segment_anything/image_encoder.rs
new file mode 100644
index 00000000..0b313830
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/image_encoder.rs
@@ -0,0 +1,483 @@
+use candle::{DType, IndexOp, Result, Tensor};
+use candle_nn::{layer_norm, LayerNorm, Module, VarBuilder};
+
+#[derive(Debug)]
+struct PatchEmbed {
+ proj: candle_nn::Conv2d,
+ span: tracing::Span,
+}
+
+impl PatchEmbed {
+ fn new(
+ in_chans: usize,
+ embed_dim: usize,
+ k_size: usize,
+ stride: usize,
+ padding: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let cfg = candle_nn::Conv2dConfig {
+ stride,
+ padding,
+ ..Default::default()
+ };
+ let proj = candle_nn::conv2d(in_chans, embed_dim, k_size, cfg, vb.pp("proj"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "patch-embed");
+ Ok(Self { proj, span })
+ }
+}
+
+impl Module for PatchEmbed {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ xs.apply(&self.proj)?.permute((0, 2, 3, 1))
+ }
+}
+
+// A custom op to make add_decomposed_rel_pos faster. Most of the time is spent on the final
+// addition in the case where b = 12, q_h = q_w = 4096, k_h = k_w = 4096
+// (attn.reshape((b, q_h, q_w, k_h, k_w))?
+// + rel_h.unsqueeze(4)?.broadcast_add(&rel_w.unsqueeze(3)?)?)?
+// .reshape((b, q_h * q_w, k_h * k_w))
+// Ideally we would perform this operation in place but this is not supported in candle at the
+// moment. We should also investigate using f16 rather than f32.
+struct Add3(usize, usize, usize, usize, usize);
+impl candle::CustomOp3 for Add3 {
+ fn name(&self) -> &'static str {
+ "add3"
+ }
+
+ fn cpu_fwd(
+ &self,
+ s1: &candle::CpuStorage,
+ l1: &candle::Layout,
+ s2: &candle::CpuStorage,
+ l2: &candle::Layout,
+ s3: &candle::CpuStorage,
+ l3: &candle::Layout,
+ ) -> Result<(candle::CpuStorage, candle::Shape)> {
+ use rayon::prelude::*;
+
+ let Add3(b, q_h, q_w, k_h, k_w) = *self;
+ let s1 = s1.as_slice::<f32>()?;
+ let s1 = match l1.contiguous_offsets() {
+ None => candle::bail!("input1 has to be contiguous"),
+ Some((o1, o2)) => &s1[o1..o2],
+ };
+ let s2 = s2.as_slice::<f32>()?;
+ let s2 = match l2.contiguous_offsets() {
+ None => candle::bail!("input2 has to be contiguous"),
+ Some((o1, o2)) => &s2[o1..o2],
+ };
+ let s3 = s3.as_slice::<f32>()?;
+ let s3 = match l3.contiguous_offsets() {
+ None => candle::bail!("input3 has to be contiguous"),
+ Some((o1, o2)) => &s3[o1..o2],
+ };
+ let mut dst = vec![0f32; b * q_h * q_w * k_h * k_w];
+ dst.par_chunks_exact_mut(k_h * k_w)
+ .enumerate()
+ .for_each(|(b_idx, dst)| {
+ let s1_idx = b_idx * k_h * k_w;
+ let s2_idx = b_idx * k_h;
+ let s3_idx = b_idx * k_w;
+ for h_idx in 0..k_h {
+ let s1_idx = s1_idx + h_idx * k_w;
+ let s2_idx = s2_idx + h_idx;
+ let dst_idx = h_idx * k_w;
+ for w_idx in 0..k_w {
+ let s1_idx = s1_idx + w_idx;
+ let s3_idx = s3_idx + w_idx;
+ let dst_idx = dst_idx + w_idx;
+ dst[dst_idx] = s1[s1_idx] + s2[s2_idx] + s3[s3_idx]
+ }
+ }
+ });
+ let dst = candle::WithDType::to_cpu_storage_owned(dst);
+ Ok((dst, (b, q_h * q_w, k_h * k_w).into()))
+ }
+}
+
+#[derive(Debug)]
+struct Attention {
+ qkv: super::Linear,
+ proj: super::Linear,
+ num_heads: usize,
+ scale: f64,
+ rel_pos_hw: Option<(Tensor, Tensor)>,
+ span: tracing::Span,
+ span_matmul: tracing::Span,
+ span_rel_pos: tracing::Span,
+ span_softmax: tracing::Span,
+}
+
+impl Attention {
+ fn new(
+ dim: usize,
+ num_heads: usize,
+ qkv_bias: bool,
+ use_rel_pos: bool,
+ input_size: (usize, usize),
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let span = tracing::span!(tracing::Level::TRACE, "attention");
+ let span_matmul = tracing::span!(tracing::Level::TRACE, "attn-matmul");
+ let span_rel_pos = tracing::span!(tracing::Level::TRACE, "attn-rel-pos");
+ let span_softmax = tracing::span!(tracing::Level::TRACE, "attn-sm");
+ let qkv = super::linear(vb.pp("qkv"), dim, dim * 3, qkv_bias)?;
+ let proj = super::linear(vb.pp("proj"), dim, dim, true)?;
+ let head_dim = dim / num_heads;
+ let scale = 1. / (head_dim as f64).sqrt();
+ let rel_pos_hw = if use_rel_pos {
+ let h = vb.get((2 * input_size.0 - 1, head_dim), "rel_pos_h")?;
+ let w = vb.get((2 * input_size.1 - 1, head_dim), "rel_pos_w")?;
+ Some((h, w))
+ } else {
+ None
+ };
+ Ok(Self {
+ qkv,
+ proj,
+ num_heads,
+ scale,
+ rel_pos_hw,
+ span,
+ span_matmul,
+ span_rel_pos,
+ span_softmax,
+ })
+ }
+
+ fn add_decomposed_rel_pos(
+ &self,
+ attn: Tensor,
+ q: &Tensor,
+ (q_h, q_w): (usize, usize),
+ (k_h, k_w): (usize, usize),
+ ) -> Result<Tensor> {
+ match &self.rel_pos_hw {
+ Some((rel_pos_h, rel_pos_w)) => {
+ let r_h = get_rel_pos(q_h, k_h, rel_pos_h)?;
+ let r_w = get_rel_pos(q_w, k_w, rel_pos_w)?;
+ let (b, _, dim) = q.dims3()?;
+ let r_q = q.reshape((b, q_h, q_w, dim))?;
+ // rel_h = torch.einsum("bhwc,hkc->bhwk", r_q, Rh)
+ let rel_h = r_q.matmul(&r_h.broadcast_left(b)?.t()?.contiguous()?)?;
+ // rel_w = torch.einsum("bhwc,wkc->bhwk", r_q, Rw)
+ let rel_w = r_q
+ .transpose(1, 2)? // -> bwhc
+ .contiguous()?
+ .matmul(&r_w.broadcast_left(b)?.t()?.contiguous()?)? // bwhc,bwck -> bwhk
+ .transpose(1, 2)?
+ .contiguous()?;
+ if attn.device().is_cpu() {
+ let op = Add3(b, q_h, q_w, k_h, k_w);
+ attn.apply_op3_no_bwd(&rel_h, &rel_w, &op)
+ } else {
+ (attn.reshape((b, q_h, q_w, k_h, k_w))?
+ + rel_h.unsqueeze(4)?.broadcast_add(&rel_w.unsqueeze(3)?)?)?
+ .reshape((b, q_h * q_w, k_h * k_w))
+ }
+ }
+ None => Ok(attn),
+ }
+ }
+}
+
+fn get_rel_pos(q_size: usize, k_size: usize, rel_pos: &Tensor) -> Result<Tensor> {
+ let max_rel_dist = 2 * usize::max(q_size, k_size) - 1;
+ let dev = rel_pos.device();
+ let rel_pos_resized = if rel_pos.dim(0)? != max_rel_dist {
+ todo!("interpolation")
+ } else {
+ rel_pos
+ };
+ let q_coords = Tensor::arange(0u32, q_size as u32, dev)?
+ .reshape((q_size, 1))?
+ .to_dtype(DType::F32)?;
+ let k_coords = Tensor::arange(0u32, k_size as u32, dev)?
+ .reshape((1, k_size))?
+ .to_dtype(DType::F32)?;
+ let q_coords = (q_coords * f64::max(1f64, k_size as f64 / q_size as f64))?;
+ let k_coords = (k_coords * f64::max(1f64, q_size as f64 / k_size as f64))?;
+ let relative_coords = (q_coords.broadcast_sub(&k_coords)?
+ + (k_size as f64 - 1.) * f64::max(1f64, q_size as f64 / k_size as f64))?;
+ let (d1, d2) = relative_coords.dims2()?;
+ let relative_coords = relative_coords.to_dtype(DType::U32)?;
+ rel_pos_resized
+ .index_select(&relative_coords.reshape(d1 * d2)?, 0)?
+ .reshape((d1, d2, ()))
+}
+
+impl Module for Attention {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b, h, w, c) = xs.dims4()?;
+ let qkv = self
+ .qkv
+ .forward(&xs.flatten_to(1)?)?
+ .reshape((b, h * w, 3, self.num_heads, c / self.num_heads))?
+ .permute((2, 0, 3, 1, 4))?
+ .reshape((3, b * self.num_heads, h * w, c / self.num_heads))?;
+ let q = qkv.i(0)?;
+ let k = qkv.i(1)?;
+ let v = qkv.i(2)?;
+ let attn = {
+ let _enter = self.span_matmul.enter();
+ (&q * self.scale)?.matmul(&k.t()?)?
+ };
+ let attn = {
+ let _enter = self.span_rel_pos.enter();
+ self.add_decomposed_rel_pos(attn, &q, (h, w), (h, w))?
+ };
+ let attn = {
+ let _enter = self.span_softmax.enter();
+ candle_nn::ops::softmax_last_dim(&attn)?
+ };
+ let attn = {
+ let _enter = self.span_matmul.enter();
+ attn.matmul(&v)?
+ };
+ let attn = attn
+ .reshape((b, self.num_heads, h, w, c / self.num_heads))?
+ .permute((0, 2, 3, 1, 4))?
+ .reshape((b, h * w, c))?;
+ self.proj.forward(&attn)?.reshape((b, h, w, c))
+ }
+}
+
+#[derive(Debug)]
+struct Block {
+ norm1: LayerNorm,
+ attn: Attention,
+ norm2: LayerNorm,
+ mlp: super::MlpBlock,
+ window_size: usize,
+ span: tracing::Span,
+}
+
+impl Block {
+ fn new(
+ dim: usize,
+ num_heads: usize,
+ qkv_bias: bool,
+ use_rel_pos: bool,
+ window_size: usize,
+ input_size: (usize, usize),
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let norm1 = layer_norm(dim, 1e-6, vb.pp("norm1"))?;
+ let norm2 = layer_norm(dim, 1e-6, vb.pp("norm2"))?;
+ let input_size_attn = if window_size == 0 {
+ input_size
+ } else {
+ (window_size, window_size)
+ };
+ let attn = Attention::new(
+ dim,
+ num_heads,
+ qkv_bias,
+ use_rel_pos,
+ input_size_attn,
+ vb.pp("attn"),
+ )?;
+ let mlp = super::MlpBlock::new(dim, dim * 4, candle_nn::Activation::Gelu, vb.pp("mlp"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "ie-block");
+ Ok(Self {
+ norm1,
+ attn,
+ norm2,
+ mlp,
+ window_size,
+ span,
+ })
+ }
+}
+
+fn window_partition(xs: Tensor, window_size: usize) -> Result<(Tensor, (usize, usize))> {
+ let (b, h, w, c) = xs.dims4()?;
+ let pad_h = (window_size - h % window_size) % window_size;
+ let pad_w = (window_size - w % window_size) % window_size;
+ let xs = if pad_h > 0 {
+ xs.pad_with_zeros(1, 0, pad_h)?
+ } else {
+ xs
+ };
+ let xs = if pad_w > 0 {
+ xs.pad_with_zeros(2, 0, pad_w)?
+ } else {
+ xs
+ };
+ let (h_p, w_p) = (h + pad_h, w + pad_w);
+ let windows = xs
+ .reshape((
+ b,
+ h_p / window_size,
+ window_size,
+ w_p / window_size,
+ window_size,
+ c,
+ ))?
+ .transpose(2, 3)?
+ .contiguous()?
+ .flatten_to(2)?;
+ Ok((windows, (h_p, w_p)))
+}
+
+fn window_unpartition(
+ windows: Tensor,
+ window_size: usize,
+ (h_p, w_p): (usize, usize),
+ (h, w): (usize, usize),
+) -> Result<Tensor> {
+ let b = windows.dim(0)? / (h_p * w_p / window_size / window_size);
+ let xs = windows
+ .reshape((
+ b,
+ h_p / window_size,
+ w_p / window_size,
+ window_size,
+ window_size,
+ windows.elem_count() / b / h_p / w_p,
+ ))?
+ .transpose(2, 3)?
+ .contiguous()?
+ .reshape((b, h_p, w_p, ()))?;
+ let xs = if h_p > h { xs.narrow(1, 0, h)? } else { xs };
+ let xs = if w_p > w { xs.narrow(2, 0, w)? } else { xs };
+ Ok(xs)
+}
+
+impl Module for Block {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let shortcut = xs;
+ let xs = self.norm1.forward(xs)?;
+ let hw = (xs.dim(1)?, xs.dim(2)?);
+ let (xs, pad_hw) = if self.window_size > 0 {
+ window_partition(xs, self.window_size)?
+ } else {
+ (xs, (0, 0))
+ };
+ let xs = self.attn.forward(&xs)?;
+ let xs = if self.window_size > 0 {
+ window_unpartition(xs, self.window_size, pad_hw, hw)?
+ } else {
+ xs
+ };
+ let xs = (xs + shortcut)?;
+ &xs + xs.apply(&self.norm2)?.apply(&self.mlp)?
+ }
+}
+
+#[derive(Debug)]
+pub struct ImageEncoderViT {
+ patch_embed: PatchEmbed,
+ blocks: Vec<Block>,
+ neck_conv1: candle_nn::Conv2d,
+ neck_ln1: super::LayerNorm2d,
+ neck_conv2: candle_nn::Conv2d,
+ neck_ln2: super::LayerNorm2d,
+ pos_embed: Option<Tensor>,
+ span: tracing::Span,
+}
+
+impl ImageEncoderViT {
+ #[allow(clippy::too_many_arguments)]
+ pub fn new(
+ img_size: usize,
+ patch_size: usize,
+ in_chans: usize,
+ embed_dim: usize,
+ depth: usize,
+ num_heads: usize,
+ out_chans: usize,
+ qkv_bias: bool,
+ use_rel_pos: bool,
+ use_abs_pos: bool,
+ window_size: usize,
+ global_attn_indexes: &[usize],
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let patch_embed = PatchEmbed::new(
+ in_chans,
+ embed_dim,
+ patch_size,
+ patch_size,
+ 0,
+ vb.pp("patch_embed"),
+ )?;
+ let mut blocks = Vec::with_capacity(depth);
+ let vb_b = vb.pp("blocks");
+ for i in 0..depth {
+ let window_size = if global_attn_indexes.contains(&i) {
+ 0
+ } else {
+ window_size
+ };
+ let block = Block::new(
+ embed_dim,
+ num_heads,
+ qkv_bias,
+ use_rel_pos,
+ window_size,
+ (img_size / patch_size, img_size / patch_size),
+ vb_b.pp(i),
+ )?;
+ blocks.push(block)
+ }
+ let neck_conv1 = candle_nn::conv2d_no_bias(
+ embed_dim,
+ out_chans,
+ 1,
+ Default::default(),
+ vb.pp("neck.0"),
+ )?;
+ let neck_ln1 = super::LayerNorm2d::new(out_chans, 1e-6, vb.pp("neck.1"))?;
+ let cfg = candle_nn::Conv2dConfig {
+ padding: 1,
+ ..Default::default()
+ };
+ let neck_conv2 = candle_nn::conv2d_no_bias(out_chans, out_chans, 3, cfg, vb.pp("neck.2"))?;
+ let neck_ln2 = super::LayerNorm2d::new(out_chans, 1e-6, vb.pp("neck.3"))?;
+ let pos_embed = if use_abs_pos {
+ let p = vb.get(
+ (1, img_size / patch_size, img_size / patch_size, embed_dim),
+ "pos_embed",
+ )?;
+ Some(p)
+ } else {
+ None
+ };
+ let span = tracing::span!(tracing::Level::TRACE, "image-encoder-vit");
+ Ok(Self {
+ patch_embed,
+ blocks,
+ neck_conv1,
+ neck_ln1,
+ neck_conv2,
+ neck_ln2,
+ pos_embed,
+ span,
+ })
+ }
+}
+
+impl Module for ImageEncoderViT {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let xs = self.patch_embed.forward(xs)?;
+ let mut xs = match &self.pos_embed {
+ Some(pos_embed) => (xs + pos_embed)?,
+ None => xs,
+ };
+ for block in self.blocks.iter() {
+ xs = block.forward(&xs)?
+ }
+ xs.permute((0, 3, 1, 2))?
+ .apply(&self.neck_conv1)?
+ .apply(&self.neck_ln1)?
+ .apply(&self.neck_conv2)?
+ .apply(&self.neck_ln2)
+ }
+}
diff --git a/candle-transformers/src/models/segment_anything/mask_decoder.rs b/candle-transformers/src/models/segment_anything/mask_decoder.rs
new file mode 100644
index 00000000..2a91cd44
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/mask_decoder.rs
@@ -0,0 +1,239 @@
+use candle::{IndexOp, Result, Tensor};
+use candle_nn::{Module, VarBuilder};
+
+use super::transformer::TwoWayTransformer;
+
+#[derive(Debug)]
+struct MlpMaskDecoder {
+ layers: Vec<super::Linear>,
+ sigmoid_output: bool,
+ span: tracing::Span,
+}
+
+impl MlpMaskDecoder {
+ fn new(
+ input_dim: usize,
+ hidden_dim: usize,
+ output_dim: usize,
+ num_layers: usize,
+ sigmoid_output: bool,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let mut layers = Vec::with_capacity(num_layers);
+ let vb = vb.pp("layers");
+ for i in 0..num_layers {
+ let in_dim = if i == 0 { input_dim } else { hidden_dim };
+ let out_dim = if i + 1 == num_layers {
+ output_dim
+ } else {
+ hidden_dim
+ };
+ let layer = super::linear(vb.pp(i), in_dim, out_dim, true)?;
+ layers.push(layer)
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "mlp-mask-decoder");
+ Ok(Self {
+ layers,
+ sigmoid_output,
+ span,
+ })
+ }
+}
+
+impl Module for MlpMaskDecoder {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let mut xs = xs.clone();
+ for (i, layer) in self.layers.iter().enumerate() {
+ xs = layer.forward(&xs)?;
+ if i + 1 < self.layers.len() {
+ xs = xs.relu()?
+ }
+ }
+ if self.sigmoid_output {
+ candle_nn::ops::sigmoid(&xs)
+ } else {
+ Ok(xs)
+ }
+ }
+}
+
+#[derive(Debug)]
+pub struct MaskDecoder {
+ iou_token: candle_nn::Embedding,
+ mask_tokens: candle_nn::Embedding,
+ iou_prediction_head: MlpMaskDecoder,
+ output_upscaling_conv1: candle_nn::ConvTranspose2d,
+ output_upscaling_ln: super::LayerNorm2d,
+ output_upscaling_conv2: candle_nn::ConvTranspose2d,
+ num_mask_tokens: usize,
+ output_hypernetworks_mlps: Vec<MlpMaskDecoder>,
+ transformer: TwoWayTransformer,
+ span: tracing::Span,
+}
+
+impl MaskDecoder {
+ pub fn new(
+ transformer_dim: usize,
+ num_multimask_outputs: usize,
+ iou_head_depth: usize,
+ iou_head_hidden_dim: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let num_mask_tokens = num_multimask_outputs + 1;
+ let iou_prediction_head = MlpMaskDecoder::new(
+ transformer_dim,
+ iou_head_hidden_dim,
+ num_mask_tokens,
+ iou_head_depth,
+ false,
+ vb.pp("iou_prediction_head"),
+ )?;
+ let iou_token = candle_nn::embedding(1, transformer_dim, vb.pp("iou_token"))?;
+ let mask_tokens =
+ candle_nn::embedding(num_mask_tokens, transformer_dim, vb.pp("mask_tokens"))?;
+ let cfg = candle_nn::ConvTranspose2dConfig {
+ stride: 2,
+ ..Default::default()
+ };
+ let output_upscaling_conv1 = candle_nn::conv_transpose2d(
+ transformer_dim,
+ transformer_dim / 4,
+ 2,
+ cfg,
+ vb.pp("output_upscaling.0"),
+ )?;
+ let output_upscaling_ln =
+ super::LayerNorm2d::new(transformer_dim / 4, 1e-6, vb.pp("output_upscaling.1"))?;
+ let output_upscaling_conv2 = candle_nn::conv_transpose2d(
+ transformer_dim / 4,
+ transformer_dim / 8,
+ 2,
+ cfg,
+ vb.pp("output_upscaling.3"),
+ )?;
+ let mut output_hypernetworks_mlps = Vec::with_capacity(num_mask_tokens);
+ let vb_o = vb.pp("output_hypernetworks_mlps");
+ for i in 0..num_mask_tokens {
+ let mlp = MlpMaskDecoder::new(
+ transformer_dim,
+ transformer_dim,
+ transformer_dim / 8,
+ 3,
+ false,
+ vb_o.pp(i),
+ )?;
+ output_hypernetworks_mlps.push(mlp)
+ }
+ let transformer = TwoWayTransformer::new(
+ /* depth */ 2,
+ /* embedding_dim */ transformer_dim,
+ /* num_heads */ 8,
+ /* mlp_dim */ 2048,
+ vb.pp("transformer"),
+ )?;
+ let span = tracing::span!(tracing::Level::TRACE, "mask-decoder");
+ Ok(Self {
+ iou_token,
+ mask_tokens,
+ iou_prediction_head,
+ output_upscaling_conv1,
+ output_upscaling_ln,
+ output_upscaling_conv2,
+ num_mask_tokens,
+ output_hypernetworks_mlps,
+ transformer,
+ span,
+ })
+ }
+
+ pub fn forward(
+ &self,
+ image_embeddings: &Tensor,
+ image_pe: &Tensor,
+ sparse_prompt_embeddings: &Tensor,
+ dense_prompt_embeddings: &Tensor,
+ multimask_output: bool,
+ ) -> Result<(Tensor, Tensor)> {
+ let _enter = self.span.enter();
+ let (masks, iou_pred) = self.predict_masks(
+ image_embeddings,
+ image_pe,
+ sparse_prompt_embeddings,
+ dense_prompt_embeddings,
+ )?;
+ let masks = if multimask_output {
+ masks.i((.., 1..))?
+ } else {
+ masks.i((.., 0..1))?
+ };
+ let iou_pred = if multimask_output {
+ iou_pred.i((.., 1..))?
+ } else {
+ iou_pred.i((.., 0..1))?
+ };
+ Ok((masks, iou_pred))
+ }
+
+ fn predict_masks(
+ &self,
+ image_embeddings: &Tensor,
+ image_pe: &Tensor,
+ sparse_prompt_embeddings: &Tensor,
+ dense_prompt_embeddings: &Tensor,
+ ) -> Result<(Tensor, Tensor)> {
+ // Concatenate ouput tokens.
+ let output_tokens = Tensor::cat(
+ &[self.iou_token.embeddings(), self.mask_tokens.embeddings()],
+ 0,
+ )?;
+ let (d1, d2) = output_tokens.dims2()?;
+ let output_tokens =
+ output_tokens
+ .unsqueeze(0)?
+ .expand((sparse_prompt_embeddings.dim(0)?, d1, d2))?;
+ let tokens = Tensor::cat(&[&output_tokens, sparse_prompt_embeddings], 1)?;
+
+ // Expand per-image data in batch direction to be per mask
+ let src = repeat_interleave(image_embeddings, tokens.dim(0)?, 0)?;
+ let src = src.broadcast_add(dense_prompt_embeddings)?;
+ let pos_src = repeat_interleave(image_pe, tokens.dim(0)?, 0)?;
+ let (b, c, h, w) = src.dims4()?;
+
+ // Run the transformer
+ let (hs, src) = self.transformer.forward(&src, &pos_src, &tokens)?;
+ let iou_token_out = hs.i((.., 0))?;
+ let mask_tokens_out = hs.i((.., 1..1 + self.num_mask_tokens))?;
+
+ // Upscale mask embeddings and predict masks using the masks tokens.
+ let src = src.transpose(1, 2)?.reshape((b, c, h, w))?;
+ let upscaled_embedding = self
+ .output_upscaling_conv1
+ .forward(&src)?
+ .apply(&self.output_upscaling_ln)?
+ .gelu()?
+ .apply(&self.output_upscaling_conv2)?
+ .gelu()?;
+ let mut hyper_in_list = Vec::with_capacity(self.num_mask_tokens);
+ for (i, mlp) in self.output_hypernetworks_mlps.iter().enumerate() {
+ let h = mlp.forward(&mask_tokens_out.i((.., i))?)?;
+ hyper_in_list.push(h)
+ }
+ let hyper_in = Tensor::stack(hyper_in_list.as_slice(), 1)?.contiguous()?;
+ let (b, c, h, w) = upscaled_embedding.dims4()?;
+ let masks = hyper_in.matmul(&upscaled_embedding.reshape((b, c, h * w))?)?;
+ let masks = masks.reshape((b, (), h, w))?;
+
+ // Generate mask quality predictions.
+ let iou_pred = self.iou_prediction_head.forward(&iou_token_out)?;
+ Ok((masks, iou_pred))
+ }
+}
+
+// Equivalent to torch.repeat_interleave
+fn repeat_interleave(img: &Tensor, repeats: usize, dim: usize) -> Result<Tensor> {
+ let img = img.unsqueeze(dim + 1)?;
+ let mut dims = img.dims().to_vec();
+ dims[dim + 1] = repeats;
+ img.broadcast_as(dims)?.flatten(dim, dim + 1)
+}
diff --git a/candle-transformers/src/models/segment_anything/mod.rs b/candle-transformers/src/models/segment_anything/mod.rs
new file mode 100644
index 00000000..c29db70a
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/mod.rs
@@ -0,0 +1,100 @@
+use candle::{Result, Tensor};
+use candle_nn::{Module, VarBuilder};
+
+pub mod image_encoder;
+pub mod mask_decoder;
+pub mod prompt_encoder;
+pub mod sam;
+pub mod tiny_vit;
+pub mod transformer;
+
+pub fn linear(vb: VarBuilder, in_dim: usize, out_dim: usize, bias: bool) -> Result<Linear> {
+ let inner = if bias {
+ candle_nn::linear(in_dim, out_dim, vb)?
+ } else {
+ candle_nn::linear_no_bias(in_dim, out_dim, vb)?
+ };
+ let span = tracing::span!(tracing::Level::TRACE, "linear");
+ Ok(Linear { inner, span })
+}
+
+#[derive(Debug)]
+pub struct LayerNorm2d {
+ weight: Tensor,
+ bias: Tensor,
+ num_channels: usize,
+ eps: f64,
+}
+
+impl LayerNorm2d {
+ pub fn new(num_channels: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let weight = vb.get(num_channels, "weight")?;
+ let bias = vb.get(num_channels, "bias")?;
+ Ok(Self {
+ weight,
+ bias,
+ num_channels,
+ eps,
+ })
+ }
+}
+
+impl Module for LayerNorm2d {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let u = xs.mean_keepdim(1)?;
+ let xs = xs.broadcast_sub(&u)?;
+ let s = xs.sqr()?.mean_keepdim(1)?;
+ let xs = xs.broadcast_div(&(s + self.eps)?.sqrt()?)?;
+ xs.broadcast_mul(&self.weight.reshape((1, self.num_channels, 1, 1))?)?
+ .broadcast_add(&self.bias.reshape((1, self.num_channels, 1, 1))?)
+ }
+}
+
+#[derive(Debug)]
+pub struct MlpBlock {
+ lin1: Linear,
+ lin2: Linear,
+ activation: candle_nn::Activation,
+ span: tracing::Span,
+}
+
+impl MlpBlock {
+ pub fn new(
+ embedding_dim: usize,
+ mlp_dim: usize,
+ activation: candle_nn::Activation,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let lin1 = linear(vb.pp("lin1"), embedding_dim, mlp_dim, true)?;
+ let lin2 = linear(vb.pp("lin2"), mlp_dim, embedding_dim, true)?;
+ let span = tracing::span!(tracing::Level::TRACE, "mlp-block");
+ Ok(Self {
+ lin1,
+ lin2,
+ activation,
+ span,
+ })
+ }
+}
+
+impl Module for MlpBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ xs.apply(&self.lin1)?
+ .apply(&self.activation)?
+ .apply(&self.lin2)
+ }
+}
+
+#[derive(Debug)]
+pub struct Linear {
+ inner: candle_nn::Linear,
+ span: tracing::Span,
+}
+
+impl Module for Linear {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ self.inner.forward(x)
+ }
+}
diff --git a/candle-transformers/src/models/segment_anything/prompt_encoder.rs b/candle-transformers/src/models/segment_anything/prompt_encoder.rs
new file mode 100644
index 00000000..9d0074b1
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/prompt_encoder.rs
@@ -0,0 +1,239 @@
+use candle::{DType, IndexOp, Result, Tensor, D};
+use candle_nn::VarBuilder;
+
+#[derive(Debug)]
+struct PostionEmbeddingRandom {
+ positional_encoding_gaussian_matrix: Tensor,
+}
+
+impl PostionEmbeddingRandom {
+ fn new(num_pos_feats: usize, vb: VarBuilder) -> Result<Self> {
+ let positional_encoding_gaussian_matrix =
+ vb.get((2, num_pos_feats), "positional_encoding_gaussian_matrix")?;
+ Ok(Self {
+ positional_encoding_gaussian_matrix,
+ })
+ }
+
+ fn pe_encoding(&self, coords: &Tensor) -> Result<Tensor> {
+ let coords = coords.affine(2., -1.)?;
+ let coords = coords.broadcast_matmul(&self.positional_encoding_gaussian_matrix)?;
+ let coords = (coords * (2. * std::f64::consts::PI))?;
+ Tensor::cat(&[coords.sin()?, coords.cos()?], D::Minus1)
+ }
+
+ fn forward(&self, h: usize, w: usize) -> Result<Tensor> {
+ let device = self.positional_encoding_gaussian_matrix.device();
+ let x_embed = (Tensor::arange(0u32, w as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let y_embed = (Tensor::arange(0u32, h as u32, device)?.to_dtype(DType::F32)? + 0.5)?;
+ let x_embed = (x_embed / w as f64)?
+ .reshape((1, ()))?
+ .broadcast_as((h, w))?;
+ let y_embed = (y_embed / h as f64)?
+ .reshape(((), 1))?
+ .broadcast_as((h, w))?;
+ let coords = Tensor::stack(&[&x_embed, &y_embed], D::Minus1)?;
+ self.pe_encoding(&coords)?.permute((2, 0, 1))
+ }
+
+ fn forward_with_coords(
+ &self,
+ coords_input: &Tensor,
+ image_size: (usize, usize),
+ ) -> Result<Tensor> {
+ let coords0 = (coords_input.narrow(D::Minus1, 0, 1)? / image_size.1 as f64)?;
+ let coords1 = (coords_input.narrow(D::Minus1, 1, 1)? / image_size.0 as f64)?;
+ let c = coords_input.dim(D::Minus1)?;
+ let coords_rest = coords_input.narrow(D::Minus1, 2, c - 2)?;
+ let coords = Tensor::cat(&[&coords0, &coords1, &coords_rest], D::Minus1)?;
+ self.pe_encoding(&coords)
+ }
+}
+
+#[derive(Debug)]
+pub struct PromptEncoder {
+ pe_layer: PostionEmbeddingRandom,
+ point_embeddings: Vec<candle_nn::Embedding>,
+ not_a_point_embed: candle_nn::Embedding,
+ mask_downscaling_conv1: candle_nn::Conv2d,
+ mask_downscaling_ln1: super::LayerNorm2d,
+ mask_downscaling_conv2: candle_nn::Conv2d,
+ mask_downscaling_ln2: super::LayerNorm2d,
+ mask_downscaling_conv3: candle_nn::Conv2d,
+ no_mask_embed: candle_nn::Embedding,
+ image_embedding_size: (usize, usize),
+ input_image_size: (usize, usize),
+ embed_dim: usize,
+ span: tracing::Span,
+}
+
+impl PromptEncoder {
+ pub fn new(
+ embed_dim: usize,
+ image_embedding_size: (usize, usize),
+ input_image_size: (usize, usize),
+ mask_in_chans: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let num_points_embeddings = 4;
+ let pe_layer = PostionEmbeddingRandom::new(embed_dim / 2, vb.pp("pe_layer"))?;
+ let not_a_point_embed = candle_nn::embedding(1, embed_dim, vb.pp("not_a_point_embed"))?;
+ let no_mask_embed = candle_nn::embedding(1, embed_dim, vb.pp("no_mask_embed"))?;
+ let cfg = candle_nn::Conv2dConfig {
+ stride: 2,
+ ..Default::default()
+ };
+ let mask_downscaling_conv1 =
+ candle_nn::conv2d(1, mask_in_chans / 4, 2, cfg, vb.pp("mask_downscaling.0"))?;
+ let mask_downscaling_conv2 = candle_nn::conv2d(
+ mask_in_chans / 4,
+ mask_in_chans,
+ 2,
+ cfg,
+ vb.pp("mask_downscaling.3"),
+ )?;
+ let mask_downscaling_conv3 = candle_nn::conv2d(
+ mask_in_chans,
+ embed_dim,
+ 1,
+ Default::default(),
+ vb.pp("mask_downscaling.6"),
+ )?;
+ let mask_downscaling_ln1 =
+ super::LayerNorm2d::new(mask_in_chans / 4, 1e-6, vb.pp("mask_downscaling.1"))?;
+ let mask_downscaling_ln2 =
+ super::LayerNorm2d::new(mask_in_chans, 1e-6, vb.pp("mask_downscaling.4"))?;
+ let mut point_embeddings = Vec::with_capacity(num_points_embeddings);
+ let vb_e = vb.pp("point_embeddings");
+ for i in 0..num_points_embeddings {
+ let emb = candle_nn::embedding(1, embed_dim, vb_e.pp(i))?;
+ point_embeddings.push(emb)
+ }
+ let span = tracing::span!(tracing::Level::TRACE, "prompt-encoder");
+ Ok(Self {
+ pe_layer,
+ point_embeddings,
+ not_a_point_embed,
+ mask_downscaling_conv1,
+ mask_downscaling_ln1,
+ mask_downscaling_conv2,
+ mask_downscaling_ln2,
+ mask_downscaling_conv3,
+ no_mask_embed,
+ image_embedding_size,
+ input_image_size,
+ embed_dim,
+ span,
+ })
+ }
+
+ pub fn get_dense_pe(&self) -> Result<Tensor> {
+ self.pe_layer
+ .forward(self.image_embedding_size.0, self.image_embedding_size.1)?
+ .unsqueeze(0)
+ }
+
+ fn embed_masks(&self, masks: &Tensor) -> Result<Tensor> {
+ masks
+ .apply(&self.mask_downscaling_conv1)?
+ .apply(&self.mask_downscaling_ln1)?
+ .gelu()?
+ .apply(&self.mask_downscaling_conv2)?
+ .apply(&self.mask_downscaling_ln2)?
+ .gelu()?
+ .apply(&self.mask_downscaling_conv3)
+ }
+
+ fn embed_points(&self, points: &Tensor, labels: &Tensor, pad: bool) -> Result<Tensor> {
+ let points = (points + 0.5)?;
+ let dev = points.device();
+ let (points, labels) = if pad {
+ let padding_point = Tensor::zeros((points.dim(0)?, 1, 2), DType::F32, dev)?;
+ let padding_label = (Tensor::ones((labels.dim(0)?, 1), DType::F32, dev)? * (-1f64))?;
+ let points = Tensor::cat(&[&points, &padding_point], 1)?;
+ let labels = Tensor::cat(&[labels, &padding_label], 1)?;
+ (points, labels)
+ } else {
+ (points, labels.clone())
+ };
+ let point_embedding = self
+ .pe_layer
+ .forward_with_coords(&points, self.input_image_size)?;
+ let labels = labels.unsqueeze(2)?.broadcast_as(point_embedding.shape())?;
+ let zeros = point_embedding.zeros_like()?;
+ let point_embedding = labels.lt(0f32)?.where_cond(
+ &self
+ .not_a_point_embed
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &point_embedding,
+ )?;
+ let labels0 = labels.eq(0f32)?.where_cond(
+ &self.point_embeddings[0]
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &zeros,
+ )?;
+ let point_embedding = (point_embedding + labels0)?;
+ let labels1 = labels.eq(1f32)?.where_cond(
+ &self.point_embeddings[1]
+ .embeddings()
+ .broadcast_as(zeros.shape())?,
+ &zeros,
+ )?;
+ let point_embedding = (point_embedding + labels1)?;
+ Ok(point_embedding)
+ }
+
+ fn embed_boxes(&self, boxes: &Tensor) -> Result<Tensor> {
+ let boxes = (boxes + 0.5)?;
+ let coords = boxes.reshape(((), 2, 2))?;
+ let corner_embedding = self
+ .pe_layer
+ .forward_with_coords(&coords, self.input_image_size)?;
+ let ce1 = corner_embedding.i((.., 0))?;
+ let ce2 = corner_embedding.i((.., 1))?;
+ let ce1 = (ce1 + self.point_embeddings[2].embeddings())?;
+ let ce2 = (ce2 + self.point_embeddings[3].embeddings())?;
+ Tensor::cat(&[&ce1, &ce2], 1)
+ }
+
+ pub fn forward(
+ &self,
+ points: Option<(&Tensor, &Tensor)>,
+ boxes: Option<&Tensor>,
+ masks: Option<&Tensor>,
+ ) -> Result<(Tensor, Tensor)> {
+ let _enter = self.span.enter();
+ let se_points = match points {
+ Some((coords, labels)) => Some(self.embed_points(coords, labels, boxes.is_none())?),
+ None => None,
+ };
+ let se_boxes = match boxes {
+ Some(boxes) => Some(self.embed_boxes(boxes)?),
+ None => None,
+ };
+ let sparse_embeddings = match (se_points, se_boxes) {
+ (Some(se_points), Some(se_boxes)) => Tensor::cat(&[se_points, se_boxes], 1)?,
+ (Some(se_points), None) => se_points,
+ (None, Some(se_boxes)) => se_boxes,
+ (None, None) => {
+ Tensor::zeros((1, 0, self.embed_dim), DType::F32, &candle::Device::Cpu)?
+ }
+ };
+
+ let dense_embeddings = match masks {
+ None => {
+ let emb = self.no_mask_embed.embeddings();
+ emb.reshape((1, (), 1, 1))?.expand((
+ 1,
+ emb.elem_count(),
+ self.image_embedding_size.0,
+ self.image_embedding_size.1,
+ ))?
+ }
+ Some(masks) => self.embed_masks(masks)?,
+ };
+ Ok((sparse_embeddings, dense_embeddings))
+ }
+}
diff --git a/candle-transformers/src/models/segment_anything/sam.rs b/candle-transformers/src/models/segment_anything/sam.rs
new file mode 100644
index 00000000..c40473e3
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/sam.rs
@@ -0,0 +1,411 @@
+use candle::{DType, IndexOp, Result, Tensor};
+use candle_nn::{Module, VarBuilder};
+
+use super::image_encoder::ImageEncoderViT;
+use super::mask_decoder::MaskDecoder;
+use super::prompt_encoder::PromptEncoder;
+use super::tiny_vit::{tiny_vit_5m, TinyViT};
+
+const PROMPT_EMBED_DIM: usize = 256;
+pub const IMAGE_SIZE: usize = 1024;
+const VIT_PATCH_SIZE: usize = 16;
+const PRED_IOU_THRESH: f32 = 0.88;
+const STABILITY_SCORE_OFFSET: f32 = 1.0;
+const STABILITY_SCORE_THRESHOLD: f32 = 0.95;
+const MODEL_MASK_THRESHOLD: f32 = 0.0;
+const CROP_NMS_THRESH: f32 = 0.7;
+
+#[derive(Debug)]
+enum ImageEncoder {
+ Original(ImageEncoderViT),
+ TinyViT(TinyViT),
+}
+
+impl Module for ImageEncoder {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ match self {
+ Self::Original(vit) => vit.forward(xs),
+ Self::TinyViT(vit) => vit.forward(xs),
+ }
+ }
+}
+
+#[derive(Debug)]
+pub struct Sam {
+ image_encoder: ImageEncoder,
+ prompt_encoder: PromptEncoder,
+ mask_decoder: MaskDecoder,
+ pixel_mean: Tensor,
+ pixel_std: Tensor,
+}
+
+impl Sam {
+ pub fn new(
+ encoder_embed_dim: usize,
+ encoder_depth: usize,
+ encoder_num_heads: usize,
+ encoder_global_attn_indexes: &[usize],
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE;
+
+ let image_encoder = ImageEncoderViT::new(
+ IMAGE_SIZE,
+ VIT_PATCH_SIZE,
+ 3,
+ encoder_embed_dim,
+ encoder_depth,
+ encoder_num_heads,
+ PROMPT_EMBED_DIM,
+ /* qkv_bias */ true,
+ /* use_rel_pos */ true,
+ /* use_abs_pos */ true,
+ /* window_size */ 14,
+ /* global_attn_indexes */ encoder_global_attn_indexes,
+ vb.pp("image_encoder"),
+ )?;
+ let prompt_encoder = PromptEncoder::new(
+ PROMPT_EMBED_DIM,
+ (image_embedding_size, image_embedding_size),
+ (IMAGE_SIZE, IMAGE_SIZE),
+ 16,
+ vb.pp("prompt_encoder"),
+ )?;
+ let mask_decoder = MaskDecoder::new(
+ PROMPT_EMBED_DIM,
+ /* num_multitask_outputs */ 3,
+ /* iou_head_depth */ 3,
+ /* iou_head_hidden_dim */ 256,
+ vb.pp("mask_decoder"),
+ )?;
+ let pixel_mean =
+ Tensor::new(&[123.675f32, 116.28, 103.53], vb.device())?.reshape((3, 1, 1))?;
+ let pixel_std =
+ Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
+ Ok(Self {
+ image_encoder: ImageEncoder::Original(image_encoder),
+ prompt_encoder,
+ mask_decoder,
+ pixel_std,
+ pixel_mean,
+ })
+ }
+
+ pub fn new_tiny(vb: VarBuilder) -> Result<Self> {
+ let image_embedding_size = IMAGE_SIZE / VIT_PATCH_SIZE;
+
+ let image_encoder = tiny_vit_5m(vb.pp("image_encoder"))?;
+ let prompt_encoder = PromptEncoder::new(
+ PROMPT_EMBED_DIM,
+ (image_embedding_size, image_embedding_size),
+ (IMAGE_SIZE, IMAGE_SIZE),
+ 16,
+ vb.pp("prompt_encoder"),
+ )?;
+ let mask_decoder = MaskDecoder::new(
+ PROMPT_EMBED_DIM,
+ /* num_multitask_outputs */ 3,
+ /* iou_head_depth */ 3,
+ /* iou_head_hidden_dim */ 256,
+ vb.pp("mask_decoder"),
+ )?;
+ let pixel_mean =
+ Tensor::new(&[123.675f32, 116.28, 103.53], vb.device())?.reshape((3, 1, 1))?;
+ let pixel_std =
+ Tensor::new(&[58.395f32, 57.12, 57.375], vb.device())?.reshape((3, 1, 1))?;
+ Ok(Self {
+ image_encoder: ImageEncoder::TinyViT(image_encoder),
+ prompt_encoder,
+ mask_decoder,
+ pixel_std,
+ pixel_mean,
+ })
+ }
+
+ pub fn forward(
+ &self,
+ img: &Tensor,
+ point: Option<(f64, f64)>,
+ multimask_output: bool,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_c, original_h, original_w) = img.dims3()?;
+ let img = self.preprocess(img)?.unsqueeze(0)?;
+ let img_embeddings = self.image_encoder.forward(&img)?;
+ let image_pe = self.prompt_encoder.get_dense_pe()?;
+ let points = match point {
+ None => None,
+ Some((x, y)) => {
+ let points = Tensor::new(
+ &[[[x as f32 * original_w as f32, y as f32 * original_h as f32]]],
+ img.device(),
+ )?;
+ let labels = Tensor::ones((1, 1), DType::F32, img.device())?;
+ Some((points, labels))
+ }
+ };
+ let points = points.as_ref().map(|(x, y)| (x, y));
+ let (sparse_prompt_embeddings, dense_prompt_embeddings) =
+ self.prompt_encoder.forward(points, None, None)?;
+ let (low_res_mask, iou_predictions) = self.mask_decoder.forward(
+ &img_embeddings,
+ &image_pe,
+ &sparse_prompt_embeddings,
+ &dense_prompt_embeddings,
+ multimask_output,
+ )?;
+ let mask = low_res_mask
+ .upsample_nearest2d(IMAGE_SIZE, IMAGE_SIZE)?
+ .get(0)?
+ .i((.., ..original_h, ..original_w))?;
+ Ok((mask, iou_predictions))
+ }
+
+ pub fn unpreprocess(&self, img: &Tensor) -> Result<Tensor> {
+ let img = img
+ .broadcast_mul(&self.pixel_std)?
+ .broadcast_add(&self.pixel_mean)?;
+ img.maximum(&img.zeros_like()?)?
+ .minimum(&(img.ones_like()? * 255.)?)
+ }
+
+ pub fn preprocess(&self, img: &Tensor) -> Result<Tensor> {
+ let (_c, h, w) = img.dims3()?;
+ let img = img
+ .to_dtype(DType::F32)?
+ .broadcast_sub(&self.pixel_mean)?
+ .broadcast_div(&self.pixel_std)?;
+ if h > IMAGE_SIZE || w > IMAGE_SIZE {
+ candle::bail!("image is too large ({w}, {h}), maximum size {IMAGE_SIZE}")
+ }
+ let img = img.pad_with_zeros(1, 0, IMAGE_SIZE - h)?;
+ img.pad_with_zeros(2, 0, IMAGE_SIZE - w)
+ }
+
+ fn process_crop(
+ &self,
+ img: &Tensor,
+ cb: CropBox,
+ point_grids: &[(f64, f64)],
+ ) -> Result<Vec<crate::object_detection::Bbox<Tensor>>> {
+ // Crop the image and calculate embeddings.
+ let img = img.i((.., cb.y0..cb.y1, cb.x0..cb.x1))?;
+ let img = self.preprocess(&img)?.unsqueeze(0)?;
+ let img_embeddings = self.image_encoder.forward(&img)?;
+
+ let crop_w = cb.x1 - cb.x0;
+ let crop_h = cb.y1 - cb.y0;
+
+ // Generate masks for this crop.
+ let image_pe = self.prompt_encoder.get_dense_pe()?;
+ let points = point_grids
+ .iter()
+ .map(|&(x, y)| vec![x as f32 * crop_w as f32, y as f32 * crop_h as f32])
+ .collect::<Vec<_>>();
+
+ let mut bboxes = Vec::new();
+ for points in points.chunks(64) {
+ // Run the model on this batch.
+ let points_len = points.len();
+ let in_points = Tensor::new(points.to_vec(), img.device())?.unsqueeze(1)?;
+ let in_labels = Tensor::ones((points_len, 1), DType::F32, img.device())?;
+ let (sparse_prompt_embeddings, dense_prompt_embeddings) =
+ self.prompt_encoder
+ .forward(Some((&in_points, &in_labels)), None, None)?;
+
+ let (low_res_mask, iou_predictions) = self.mask_decoder.forward(
+ &img_embeddings,
+ &image_pe,
+ &sparse_prompt_embeddings,
+ &dense_prompt_embeddings,
+ /* multimask_output */ true,
+ )?;
+ let low_res_mask = low_res_mask.flatten(0, 1)?;
+ let iou_predictions = iou_predictions.flatten(0, 1)?.to_vec1::<f32>()?;
+ let dev = low_res_mask.device();
+
+ for (i, iou) in iou_predictions.iter().enumerate() {
+ // Filter by predicted IoU.
+ if *iou < PRED_IOU_THRESH {
+ continue;
+ }
+ let low_res_mask = low_res_mask.get(i)?;
+
+ // Calculate stability score.
+ let bound = Tensor::new(MODEL_MASK_THRESHOLD + STABILITY_SCORE_OFFSET, dev)?
+ .broadcast_as(low_res_mask.shape())?;
+ let intersections = low_res_mask
+ .ge(&bound)?
+ .to_dtype(DType::F32)?
+ .sum_all()?
+ .to_vec0::<f32>()?;
+ let bound = Tensor::new(MODEL_MASK_THRESHOLD - STABILITY_SCORE_OFFSET, dev)?
+ .broadcast_as(low_res_mask.shape())?;
+ let unions = low_res_mask
+ .ge(&bound)?
+ .to_dtype(DType::F32)?
+ .sum_all()?
+ .to_vec0::<f32>()?;
+ let stability_score = intersections / unions;
+ if stability_score < STABILITY_SCORE_THRESHOLD {
+ continue;
+ }
+
+ // Threshold masks and calculate boxes.
+ let low_res_mask = low_res_mask
+ .ge(&Tensor::new(0f32, dev)?.broadcast_as(low_res_mask.shape())?)?
+ .to_dtype(DType::U32)?;
+ let low_res_mask_per_x = low_res_mask.sum(0)?.to_vec1::<u32>()?;
+ let low_res_mask_per_y = low_res_mask.sum(1)?.to_vec1::<u32>()?;
+ let min_max_x = min_max_indexes(&low_res_mask_per_x);
+ let min_max_y = min_max_indexes(&low_res_mask_per_y);
+ if let Some(((x0, x1), (y0, y1))) = min_max_x.zip(min_max_y) {
+ let bbox = crate::object_detection::Bbox {
+ xmin: x0 as f32,
+ ymin: y0 as f32,
+ xmax: x1 as f32,
+ ymax: y1 as f32,
+ confidence: *iou,
+ data: low_res_mask,
+ };
+ bboxes.push(bbox);
+ }
+ // TODO:
+ // Filter boxes that touch crop boundaries
+ // Compress to RLE.
+ }
+ }
+
+ let mut bboxes = vec![bboxes];
+ // Remove duplicates within this crop.
+ crate::object_detection::non_maximum_suppression(&mut bboxes, CROP_NMS_THRESH);
+
+ // TODO: Return to the original image frame.
+ Ok(bboxes.remove(0))
+ }
+
+ pub fn generate_masks(
+ &self,
+ img: &Tensor,
+ points_per_side: usize,
+ crop_n_layer: usize,
+ crop_overlap_ratio: f64,
+ crop_n_points_downscale_factor: usize,
+ ) -> Result<Vec<crate::object_detection::Bbox<Tensor>>> {
+ let (_c, h, w) = img.dims3()?;
+ let point_grids = build_all_layer_point_grids(
+ points_per_side,
+ crop_n_layer,
+ crop_n_points_downscale_factor,
+ );
+ let crop_boxes = generate_crop_boxes((h, w), crop_n_layer, crop_overlap_ratio);
+ let mut bboxes = Vec::new();
+ for crop_box in crop_boxes.into_iter() {
+ let layer_idx = crop_box.layer_idx;
+ let b = self.process_crop(img, crop_box, &point_grids[layer_idx])?;
+ bboxes.extend(b)
+ }
+ // TODO: remove duplicates
+ Ok(bboxes)
+ }
+}
+
+// Return the first and last indexes i for which values[i] > 0
+fn min_max_indexes(values: &[u32]) -> Option<(usize, usize)> {
+ let (mut min_i, mut max_i) = (usize::MAX, usize::MIN);
+ for (i, &s) in values.iter().enumerate() {
+ if s == 0 {
+ continue;
+ }
+ min_i = usize::min(i, min_i);
+ max_i = usize::max(i, max_i);
+ }
+ if max_i < min_i {
+ None
+ } else {
+ Some((min_i, max_i))
+ }
+}
+
+#[derive(Debug)]
+struct CropBox {
+ x0: usize,
+ y0: usize,
+ x1: usize,
+ y1: usize,
+ layer_idx: usize,
+}
+
+impl CropBox {
+ fn new(x0: usize, y0: usize, x1: usize, y1: usize, layer_idx: usize) -> Self {
+ Self {
+ x0,
+ y0,
+ x1,
+ y1,
+ layer_idx,
+ }
+ }
+}
+
+fn generate_crop_boxes(
+ (im_h, im_w): (usize, usize),
+ n_layers: usize,
+ overlap_ratio: f64,
+) -> Vec<CropBox> {
+ fn crop_len(orig_len: usize, n_crops: usize, overlap: usize) -> usize {
+ f64::ceil((overlap * (n_crops - 1) + orig_len) as f64 / n_crops as f64) as usize
+ }
+
+ let short_side = usize::min(im_h, im_w);
+
+ let mut crop_boxes = Vec::new();
+
+ // Original image.
+ crop_boxes.push(CropBox::new(0, 0, im_w, im_h, 0));
+
+ for layer_idx in 1..=n_layers {
+ let n_crops_per_side = 1 << layer_idx;
+ let overlap = (overlap_ratio * short_side as f64 * 2. / n_crops_per_side as f64) as usize;
+ let crop_w = crop_len(im_w, n_crops_per_side, overlap);
+ let crop_h = crop_len(im_w, n_crops_per_side, overlap);
+
+ for i_x in 0..n_crops_per_side {
+ let x0 = (crop_w - overlap) * i_x;
+ for i_y in 0..n_crops_per_side {
+ let y0 = (crop_h - overlap) * i_y;
+ let x1 = usize::min(im_w, x0 + crop_w);
+ let y1 = usize::min(im_h, y0 + crop_h);
+ crop_boxes.push(CropBox::new(x0, y0, x1, y1, layer_idx));
+ }
+ }
+ }
+
+ crop_boxes
+}
+
+// Generates a 2D grid of points evenly spaced in [0,1]x[0,1].
+fn build_point_grid(n_per_side: usize) -> Vec<(f64, f64)> {
+ let offset = 1f64 / (2 * n_per_side) as f64;
+ let mut points = Vec::with_capacity(n_per_side * n_per_side);
+ for i_x in 0..n_per_side {
+ let x = offset + i_x as f64 / n_per_side as f64;
+ for i_y in 0..n_per_side {
+ let y = offset + i_y as f64 / n_per_side as f64;
+ points.push((x, y))
+ }
+ }
+ points
+}
+
+fn build_all_layer_point_grids(
+ n_per_side: usize,
+ n_layers: usize,
+ scale_per_layer: usize,
+) -> Vec<Vec<(f64, f64)>> {
+ let mut points_by_layer = Vec::with_capacity(n_layers + 1);
+ for i in 0..=n_layers {
+ let n_points = n_per_side / scale_per_layer.pow(i as u32);
+ points_by_layer.push(build_point_grid(n_points))
+ }
+ points_by_layer
+}
diff --git a/candle-transformers/src/models/segment_anything/tiny_vit.rs b/candle-transformers/src/models/segment_anything/tiny_vit.rs
new file mode 100644
index 00000000..cd2936ab
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/tiny_vit.rs
@@ -0,0 +1,633 @@
+// Adapted from:
+// https://github.com/ChaoningZhang/MobileSAM/blob/master/mobile_sam/modeling/tiny_vit_sam.py
+use candle::{IndexOp, Result, Tensor, D};
+use candle_nn::{Conv2dConfig, Module, VarBuilder};
+
+const MBCONV_EXPAND_RATIO: usize = 4;
+const MLP_RATIO: usize = 4;
+const LOCAL_CONV_SIZE: usize = 3;
+const IMG_SIZE: usize = 1024;
+const IN_CHANNELS: usize = 3;
+
+#[derive(Debug)]
+struct Conv2dBN {
+ c: candle_nn::Conv2d,
+ bn: candle_nn::BatchNorm,
+ span: tracing::Span,
+}
+
+impl Conv2dBN {
+ fn new(in_: usize, out: usize, ks: usize, cfg: Conv2dConfig, vb: VarBuilder) -> Result<Self> {
+ let c = candle_nn::conv2d_no_bias(in_, out, ks, cfg, vb.pp("c"))?;
+ let bn = candle_nn::batch_norm(out, 1e-5, vb.pp("bn"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "conv2d-bn");
+ Ok(Self { c, bn, span })
+ }
+}
+
+impl Module for Conv2dBN {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ xs.apply(&self.c)?.apply(&self.bn)
+ }
+}
+
+#[derive(Debug)]
+struct PatchEmbed {
+ conv1: Conv2dBN,
+ conv2: Conv2dBN,
+ span: tracing::Span,
+}
+
+impl PatchEmbed {
+ fn new(in_chans: usize, embed_dim: usize, vb: VarBuilder) -> Result<Self> {
+ let cfg = candle_nn::Conv2dConfig {
+ stride: 2,
+ padding: 1,
+ ..Default::default()
+ };
+ let conv1 = Conv2dBN::new(in_chans, embed_dim / 2, 3, cfg, vb.pp("seq.0"))?;
+ let conv2 = Conv2dBN::new(embed_dim / 2, embed_dim, 3, cfg, vb.pp("seq.2"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "patch-embed");
+ Ok(Self { conv1, conv2, span })
+ }
+}
+
+impl Module for PatchEmbed {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ xs.apply(&self.conv1)?.gelu()?.apply(&self.conv2)
+ }
+}
+
+#[derive(Debug)]
+struct MBConv {
+ conv1: Conv2dBN,
+ conv2: Conv2dBN,
+ conv3: Conv2dBN,
+ span: tracing::Span,
+}
+
+impl MBConv {
+ fn new(in_: usize, out: usize, expand_ratio: usize, vb: VarBuilder) -> Result<Self> {
+ let hidden = in_ * expand_ratio;
+ let cfg2 = candle_nn::Conv2dConfig {
+ padding: 1,
+ groups: hidden,
+ ..Default::default()
+ };
+ let conv1 = Conv2dBN::new(in_, hidden, 1, Default::default(), vb.pp("conv1"))?;
+ let conv2 = Conv2dBN::new(hidden, hidden, 3, cfg2, vb.pp("conv2"))?;
+ let conv3 = Conv2dBN::new(hidden, out, 1, Default::default(), vb.pp("conv3"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "mb-conv");
+ Ok(Self {
+ conv1,
+ conv2,
+ conv3,
+ span,
+ })
+ }
+}
+
+impl Module for MBConv {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let shortcut = xs;
+ let xs = xs
+ .apply(&self.conv1)?
+ .gelu()?
+ .apply(&self.conv2)?
+ .gelu()?
+ .apply(&self.conv3)?;
+ (xs + shortcut)?.gelu()
+ }
+}
+
+#[derive(Debug)]
+struct PatchMerging {
+ conv1: Conv2dBN,
+ conv2: Conv2dBN,
+ conv3: Conv2dBN,
+ input_resolution: (usize, usize),
+ span: tracing::Span,
+}
+
+impl PatchMerging {
+ fn new(
+ input_resolution: (usize, usize),
+ dim: usize,
+ out: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let stride = if [320, 448, 576].contains(&out) { 1 } else { 2 };
+ let cfg2 = candle_nn::Conv2dConfig {
+ padding: 1,
+ stride,
+ groups: out,
+ ..Default::default()
+ };
+ let conv1 = Conv2dBN::new(dim, out, 1, Default::default(), vb.pp("conv1"))?;
+ let conv2 = Conv2dBN::new(out, out, 3, cfg2, vb.pp("conv2"))?;
+ let conv3 = Conv2dBN::new(out, out, 1, Default::default(), vb.pp("conv3"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "patch-merging");
+ Ok(Self {
+ conv1,
+ conv2,
+ conv3,
+ input_resolution,
+ span,
+ })
+ }
+}
+
+impl Module for PatchMerging {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let xs = if xs.rank() == 3 {
+ let (h, w) = self.input_resolution;
+ let b = xs.dim(0)?;
+ xs.reshape((b, h, w, ()))?.permute((0, 3, 1, 2))?
+ } else {
+ xs.clone()
+ };
+ xs.apply(&self.conv1)?
+ .gelu()?
+ .apply(&self.conv2)?
+ .gelu()?
+ .apply(&self.conv3)?
+ .flatten_from(2)?
+ .transpose(1, 2)
+ }
+}
+
+#[derive(Debug)]
+struct ConvLayer {
+ blocks: Vec<MBConv>,
+ downsample: Option<PatchMerging>,
+ span: tracing::Span,
+}
+
+impl ConvLayer {
+ fn new(
+ dim: usize,
+ out: usize,
+ input_resolution: (usize, usize),
+ depth: usize,
+ downsample: bool,
+ conv_expand_ratio: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let vb_b = vb.pp("blocks");
+ let mut blocks = Vec::with_capacity(depth);
+ for index in 0..depth {
+ let block = MBConv::new(dim, dim, conv_expand_ratio, vb_b.pp(index))?;
+ blocks.push(block)
+ }
+ let downsample = if downsample {
+ let downsample = PatchMerging::new(input_resolution, dim, out, vb.pp("downsample"))?;
+ Some(downsample)
+ } else {
+ None
+ };
+ let span = tracing::span!(tracing::Level::TRACE, "conv-layer");
+ Ok(Self {
+ blocks,
+ downsample,
+ span,
+ })
+ }
+}
+
+impl Module for ConvLayer {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let mut xs = xs.clone();
+ for block in self.blocks.iter() {
+ xs = block.forward(&xs)?
+ }
+ match &self.downsample {
+ None => Ok(xs),
+ Some(downsample) => downsample.forward(&xs),
+ }
+ }
+}
+
+#[derive(Debug)]
+struct Mlp {
+ norm: candle_nn::LayerNorm,
+ fc1: super::Linear,
+ fc2: super::Linear,
+ span: tracing::Span,
+}
+
+impl Mlp {
+ fn new(in_: usize, hidden: usize, vb: VarBuilder) -> Result<Self> {
+ let norm = candle_nn::layer_norm(in_, 1e-5, vb.pp("norm"))?;
+ let fc1 = super::linear(vb.pp("fc1"), in_, hidden, true)?;
+ let fc2 = super::linear(vb.pp("fc2"), hidden, in_, true)?;
+ let span = tracing::span!(tracing::Level::TRACE, "mlp");
+ Ok(Self {
+ norm,
+ fc1,
+ fc2,
+ span,
+ })
+ }
+}
+
+impl Module for Mlp {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ xs.apply(&self.norm)?
+ .apply(&self.fc1)?
+ .gelu()?
+ .apply(&self.fc2)
+ }
+}
+
+#[derive(Debug)]
+struct Attention {
+ norm: candle_nn::LayerNorm,
+ qkv: super::Linear,
+ proj: super::Linear,
+ ab: Tensor,
+ key_dim: usize,
+ num_heads: usize,
+ d: usize,
+ dh: usize,
+ scale: f64,
+ span: tracing::Span,
+ span_matmul: tracing::Span,
+ span_softmax: tracing::Span,
+}
+
+impl Attention {
+ fn new(
+ dim: usize,
+ key_dim: usize,
+ num_heads: usize,
+ attn_ratio: usize,
+ resolution: (usize, usize),
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let d = attn_ratio * key_dim;
+ let dh = d * num_heads;
+ let nh_kd = key_dim * num_heads;
+ let h = dh + nh_kd * 2;
+ let norm = candle_nn::layer_norm(dim, 1e-5, vb.pp("norm"))?;
+ let qkv = super::linear(vb.pp("qkv"), dim, h, true)?;
+ let proj = super::linear(vb.pp("proj"), dh, dim, true)?;
+
+ let points = (0..resolution.0)
+ .flat_map(|x| (0..resolution.1).map(move |y| (x as i64, y as i64)))
+ .collect::<Vec<_>>();
+ let mut idxs = Vec::with_capacity(points.len() * points.len());
+ let mut attention_offsets = std::collections::HashMap::new();
+ for &(x1, y1) in points.iter() {
+ for &(x2, y2) in points.iter() {
+ let offset = ((x2 - x1).abs(), (y2 - y1).abs());
+ let l = attention_offsets.len();
+ let idx = attention_offsets.entry(offset).or_insert(l);
+ idxs.push(*idx as u32)
+ }
+ }
+ let attention_biases = vb.get((num_heads, attention_offsets.len()), "attention_biases")?;
+ let idxs = Tensor::new(idxs, attention_biases.device())?;
+ let ab =
+ attention_biases
+ .index_select(&idxs, 1)?
+ .reshape(((), points.len(), points.len()))?;
+ let span = tracing::span!(tracing::Level::TRACE, "attention");
+ let span_matmul = tracing::span!(tracing::Level::TRACE, "attn-matmul");
+ let span_softmax = tracing::span!(tracing::Level::TRACE, "attn-sm");
+ Ok(Self {
+ norm,
+ qkv,
+ proj,
+ ab,
+ key_dim,
+ num_heads,
+ d,
+ dh,
+ scale: 1f64 / (key_dim as f64).sqrt(),
+ span,
+ span_matmul,
+ span_softmax,
+ })
+ }
+}
+
+impl Module for Attention {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (b, n, _) = xs.dims3()?;
+ let xs = xs.apply(&self.norm)?;
+ let qkv = xs.apply(&self.qkv)?.reshape((b, n, self.num_heads, ()))?;
+ let q = qkv
+ .narrow(D::Minus1, 0, self.key_dim)?
+ .permute((0, 2, 1, 3))?
+ .contiguous()?;
+ let k = qkv
+ .narrow(D::Minus1, self.key_dim, self.key_dim)?
+ .permute((0, 2, 1, 3))?
+ .contiguous()?;
+ let v = qkv
+ .narrow(D::Minus1, 2 * self.key_dim, self.d)?
+ .permute((0, 2, 1, 3))?
+ .contiguous()?;
+ let attn = {
+ let _enter = self.span_matmul.enter();
+ (q.matmul(&k.t()?)? * self.scale)?
+ };
+ let attn = attn.broadcast_add(&self.ab)?;
+ let attn = {
+ let _enter = self.span_softmax.enter();
+ candle_nn::ops::softmax_last_dim(&attn)?
+ };
+ let attn = {
+ let _enter = self.span_matmul.enter();
+ attn.matmul(&v)?
+ };
+ attn.transpose(1, 2)?
+ .reshape((b, n, self.dh))?
+ .apply(&self.proj)
+ }
+}
+
+#[derive(Debug)]
+struct TinyViTBlock {
+ attn: Attention,
+ local_conv: Conv2dBN,
+ mlp: Mlp,
+ window_size: usize,
+ input_resolution: (usize, usize),
+ span: tracing::Span,
+}
+
+impl TinyViTBlock {
+ fn new(
+ dim: usize,
+ input_resolution: (usize, usize),
+ num_heads: usize,
+ window_size: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let head_dim = dim / num_heads;
+ let attn = Attention::new(
+ dim,
+ head_dim,
+ num_heads,
+ 1,
+ (window_size, window_size),
+ vb.pp("attn"),
+ )?;
+ let mlp = Mlp::new(dim, dim * MLP_RATIO, vb.pp("mlp"))?;
+ let cfg = candle_nn::Conv2dConfig {
+ padding: LOCAL_CONV_SIZE / 2,
+ groups: dim,
+ ..Default::default()
+ };
+ let local_conv = Conv2dBN::new(dim, dim, LOCAL_CONV_SIZE, cfg, vb.pp("local_conv"))?;
+ let span = tracing::span!(tracing::Level::TRACE, "attention");
+ Ok(Self {
+ attn,
+ local_conv,
+ mlp,
+ window_size,
+ input_resolution,
+ span,
+ })
+ }
+}
+
+impl Module for TinyViTBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let (h, w) = self.input_resolution;
+ let (b, l, c) = xs.dims3()?;
+ let res_x = xs;
+ let xs = if h == self.window_size && w == self.window_size {
+ self.attn.forward(xs)?
+ } else {
+ let xs = xs.reshape((b, h, w, c))?;
+ let pad_b = (self.window_size - h % self.window_size) % self.window_size;
+ let pad_r = (self.window_size - w % self.window_size) % self.window_size;
+
+ let xs = if pad_b > 0 {
+ xs.pad_with_zeros(1, 0, pad_b)?
+ } else {
+ xs
+ };
+ let xs = if pad_r > 0 {
+ xs.pad_with_zeros(2, 0, pad_r)?
+ } else {
+ xs
+ };
+ let (p_h, p_w) = (h + pad_b, w + pad_r);
+ let n_h = p_h / self.window_size;
+ let n_w = p_w / self.window_size;
+ let xs = xs
+ .reshape((b, n_h, self.window_size, n_w, self.window_size, c))?
+ .transpose(2, 3)?
+ .reshape((b * n_h * n_w, self.window_size * self.window_size, c))?;
+ let xs = self.attn.forward(&xs)?;
+ let xs = xs
+ .reshape((b, n_h, n_w, self.window_size, self.window_size, c))?
+ .transpose(2, 3)?
+ .reshape((b, p_h, p_w, c))?;
+ let xs = if pad_r > 0 {
+ xs.i((.., .., ..w))?.contiguous()?
+ } else {
+ xs
+ };
+ let xs = if pad_b > 0 {
+ xs.i((.., ..h, ..))?.contiguous()?
+ } else {
+ xs
+ };
+ xs.reshape((b, l, c))?
+ };
+ let xs = (xs + res_x)?;
+ let xs = xs
+ .transpose(1, 2)?
+ .reshape((b, c, h, w))?
+ .apply(&self.local_conv)?
+ .reshape((b, c, l))?
+ .transpose(1, 2)?;
+ &xs + self.mlp.forward(&xs)?
+ }
+}
+
+#[derive(Debug)]
+struct BasicLayer {
+ blocks: Vec<TinyViTBlock>,
+ downsample: Option<PatchMerging>,
+ span: tracing::Span,
+}
+
+impl BasicLayer {
+ #[allow(clippy::too_many_arguments)]
+ fn new(
+ dim: usize,
+ input_resolution: (usize, usize),
+ depth: usize,
+ num_heads: usize,
+ window_size: usize,
+ downsample: bool,
+ out: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let vb_b = vb.pp("blocks");
+ let mut blocks = Vec::with_capacity(depth);
+ for index in 0..depth {
+ let block = TinyViTBlock::new(
+ dim,
+ input_resolution,
+ num_heads,
+ window_size,
+ vb_b.pp(index),
+ )?;
+ blocks.push(block)
+ }
+ let downsample = if downsample {
+ let downsample = PatchMerging::new(input_resolution, dim, out, vb.pp("downsample"))?;
+ Some(downsample)
+ } else {
+ None
+ };
+ let span = tracing::span!(tracing::Level::TRACE, "basic-layer");
+ Ok(Self {
+ blocks,
+ downsample,
+ span,
+ })
+ }
+}
+
+impl Module for BasicLayer {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let mut xs = xs.clone();
+ for block in self.blocks.iter() {
+ xs = block.forward(&xs)?
+ }
+ match &self.downsample {
+ None => Ok(xs),
+ Some(downsample) => downsample.forward(&xs),
+ }
+ }
+}
+
+#[derive(Debug)]
+pub struct TinyViT {
+ patch_embed: PatchEmbed,
+ layer0: ConvLayer,
+ layers: Vec<BasicLayer>,
+ // norm_head: candle_nn::LayerNorm,
+ // head: candle_nn::Linear,
+ neck_conv1: candle_nn::Conv2d,
+ neck_ln1: super::LayerNorm2d,
+ neck_conv2: candle_nn::Conv2d,
+ neck_ln2: super::LayerNorm2d,
+ span: tracing::Span,
+ span_neck: tracing::Span,
+}
+
+impl TinyViT {
+ pub fn new(
+ embed_dims: &[usize],
+ depths: &[usize],
+ num_heads: &[usize],
+ window_sizes: &[usize],
+ _num_classes: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let patch_embed = PatchEmbed::new(IN_CHANNELS, embed_dims[0], vb.pp("patch_embed"))?;
+ let patches_resolution = IMG_SIZE / 4;
+
+ let vb_l = vb.pp("layers");
+ let layer0 = ConvLayer::new(
+ /* dim */ embed_dims[0],
+ /* out */ embed_dims[1],
+ /* input_resolution */ (patches_resolution, patches_resolution),
+ /* depth */ depths[0],
+ /* downsample */ true,
+ /* conv_expand_ratio */ MBCONV_EXPAND_RATIO,
+ vb_l.pp(0),
+ )?;
+
+ let num_layers = embed_dims.len();
+ let mut layers = Vec::with_capacity(num_layers - 1);
+ for i_layer in 1..num_layers {
+ let patches_resolution = patches_resolution / (1 << usize::min(i_layer, 2));
+ let layer = BasicLayer::new(
+ /* dim */ embed_dims[i_layer],
+ /* input_resolution */ (patches_resolution, patches_resolution),
+ /* depth */ depths[i_layer],
+ /* num_heads */ num_heads[i_layer],
+ /* window_size */ window_sizes[i_layer],
+ /* downsample */ i_layer < num_layers - 1,
+ /* out */ embed_dims[usize::min(i_layer + 1, num_layers - 1)],
+ vb_l.pp(i_layer),
+ )?;
+ layers.push(layer)
+ }
+
+ let last_embed_dim = embed_dims[embed_dims.len() - 1];
+ // let norm_head = candle_nn::layer_norm(last_embed_dim, 1e-5, vb.pp("norm_head"))?;
+ // let head = candle_nn::linear(last_embed_dim, num_classes, vb.pp("head"))?;
+ let neck_conv1 =
+ candle_nn::conv2d_no_bias(last_embed_dim, 256, 1, Default::default(), vb.pp("neck.0"))?;
+ let neck_ln1 = super::LayerNorm2d::new(256, 1e-6, vb.pp("neck.1"))?;
+ let cfg = candle_nn::Conv2dConfig {
+ padding: 1,
+ ..Default::default()
+ };
+ let neck_conv2 = candle_nn::conv2d_no_bias(256, 256, 3, cfg, vb.pp("neck.2"))?;
+ let neck_ln2 = super::LayerNorm2d::new(256, 1e-6, vb.pp("neck.3"))?;
+
+ let span = tracing::span!(tracing::Level::TRACE, "tiny-vit");
+ let span_neck = tracing::span!(tracing::Level::TRACE, "neck");
+ Ok(Self {
+ patch_embed,
+ layer0,
+ layers,
+ neck_conv1,
+ neck_ln1,
+ neck_conv2,
+ neck_ln2,
+ span,
+ span_neck,
+ })
+ }
+}
+
+impl Module for TinyViT {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let _enter = self.span.enter();
+ let xs = self.patch_embed.forward(xs)?;
+ let mut xs = self.layer0.forward(&xs)?;
+ for layer in self.layers.iter() {
+ xs = layer.forward(&xs)?
+ }
+ let (b, _, c) = xs.dims3()?;
+ let _enter = self.span_neck.enter();
+ xs.reshape((b, 64, 64, c))?
+ .permute((0, 3, 1, 2))?
+ .apply(&self.neck_conv1)?
+ .apply(&self.neck_ln1)?
+ .apply(&self.neck_conv2)?
+ .apply(&self.neck_ln2)
+ }
+}
+
+pub fn tiny_vit_5m(vb: VarBuilder) -> Result<TinyViT> {
+ TinyViT::new(
+ /* embed_dims */ &[64, 128, 160, 320],
+ /* depths */ &[2, 2, 6, 2],
+ /* num_heads */ &[2, 4, 5, 10],
+ /* window_sizes */ &[7, 7, 14, 7],
+ /* num_classes */ 1000,
+ vb,
+ )
+}
diff --git a/candle-transformers/src/models/segment_anything/transformer.rs b/candle-transformers/src/models/segment_anything/transformer.rs
new file mode 100644
index 00000000..80efb38c
--- /dev/null
+++ b/candle-transformers/src/models/segment_anything/transformer.rs
@@ -0,0 +1,221 @@
+use candle::{Result, Tensor};
+use candle_nn::{layer_norm, LayerNorm, Linear, Module, VarBuilder};
+
+#[derive(Debug)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ out_proj: Linear,
+ num_heads: usize,
+}
+
+impl Attention {
+ fn new(
+ embedding_dim: usize,
+ num_heads: usize,
+ downsample_rate: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let internal_dim = embedding_dim / downsample_rate;
+ let q_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("q_proj"))?;
+ let k_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("k_proj"))?;
+ let v_proj = candle_nn::linear(embedding_dim, internal_dim, vb.pp("v_proj"))?;
+ let out_proj = candle_nn::linear(internal_dim, embedding_dim, vb.pp("out_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ out_proj,
+ num_heads,
+ })
+ }
+
+ fn separate_heads(&self, x: &Tensor) -> Result<Tensor> {
+ let (b, n, c) = x.dims3()?;
+ x.reshape((b, n, self.num_heads, c / self.num_heads))?
+ .transpose(1, 2)?
+ .contiguous()
+ }
+
+ fn recombine_heads(&self, x: &Tensor) -> Result<Tensor> {
+ let (b, n_heads, n_tokens, c_per_head) = x.dims4()?;
+ x.transpose(1, 2)?
+ .reshape((b, n_tokens, n_heads * c_per_head))
+ }
+
+ fn forward(&self, q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> {
+ let q = self.q_proj.forward(&q.contiguous()?)?;
+ let k = self.k_proj.forward(&k.contiguous()?)?;
+ let v = self.v_proj.forward(&v.contiguous()?)?;
+
+ let q = self.separate_heads(&q)?;
+ let k = self.separate_heads(&k)?;
+ let v = self.separate_heads(&v)?;
+
+ let (_, _, _, c_per_head) = q.dims4()?;
+ let attn = (q.matmul(&k.t()?)? / (c_per_head as f64).sqrt())?;
+ let attn = candle_nn::ops::softmax_last_dim(&attn)?;
+
+ let out = attn.matmul(&v)?;
+ self.recombine_heads(&out)?.apply(&self.out_proj)
+ }
+}
+
+#[derive(Debug)]
+struct TwoWayAttentionBlock {
+ self_attn: Attention,
+ norm1: LayerNorm,
+ cross_attn_token_to_image: Attention,
+ norm2: LayerNorm,
+ mlp: super::MlpBlock,
+ norm3: LayerNorm,
+ norm4: LayerNorm,
+ cross_attn_image_to_token: Attention,
+ skip_first_layer_pe: bool,
+}
+
+impl TwoWayAttentionBlock {
+ fn new(
+ embedding_dim: usize,
+ num_heads: usize,
+ mlp_dim: usize,
+ skip_first_layer_pe: bool,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let norm1 = layer_norm(embedding_dim, 1e-5, vb.pp("norm1"))?;
+ let norm2 = layer_norm(embedding_dim, 1e-5, vb.pp("norm2"))?;
+ let norm3 = layer_norm(embedding_dim, 1e-5, vb.pp("norm3"))?;
+ let norm4 = layer_norm(embedding_dim, 1e-5, vb.pp("norm4"))?;
+ let self_attn = Attention::new(embedding_dim, num_heads, 1, vb.pp("self_attn"))?;
+ let cross_attn_token_to_image = Attention::new(
+ embedding_dim,
+ num_heads,
+ 2,
+ vb.pp("cross_attn_token_to_image"),
+ )?;
+ let cross_attn_image_to_token = Attention::new(
+ embedding_dim,
+ num_heads,
+ 2,
+ vb.pp("cross_attn_image_to_token"),
+ )?;
+ let mlp = super::MlpBlock::new(
+ embedding_dim,
+ mlp_dim,
+ candle_nn::Activation::Relu,
+ vb.pp("mlp"),
+ )?;
+ Ok(Self {
+ self_attn,
+ norm1,
+ cross_attn_image_to_token,
+ norm2,
+ mlp,
+ norm3,
+ norm4,
+ cross_attn_token_to_image,
+ skip_first_layer_pe,
+ })
+ }
+
+ fn forward(
+ &self,
+ queries: &Tensor,
+ keys: &Tensor,
+ query_pe: &Tensor,
+ key_pe: &Tensor,
+ ) -> Result<(Tensor, Tensor)> {
+ // Self attention block
+ let queries = if self.skip_first_layer_pe {
+ self.self_attn.forward(queries, queries, queries)?
+ } else {
+ let q = (queries + query_pe)?;
+ let attn_out = self.self_attn.forward(&q, &q, queries)?;
+ (queries + attn_out)?
+ };
+ let queries = self.norm1.forward(&queries)?;
+
+ // Cross attention block, tokens attending to image embedding
+ let q = (&queries + query_pe)?;
+ let k = (keys + key_pe)?;
+ let attn_out = self.cross_attn_token_to_image.forward(&q, &k, keys)?;
+ let queries = (&queries + attn_out)?;
+ let queries = self.norm2.forward(&queries)?;
+
+ // MLP block
+ let mlp_out = self.mlp.forward(&queries);
+ let queries = (queries + mlp_out)?;
+ let queries = self.norm3.forward(&queries)?;
+
+ // Cross attention block, image embedding attending to tokens
+ let q = (&queries + query_pe)?;
+ let k = (keys + key_pe)?;
+ let attn_out = self.cross_attn_image_to_token.forward(&k, &q, &queries)?;
+ let keys = (keys + attn_out)?;
+ let keys = self.norm4.forward(&keys)?;
+
+ Ok((queries, keys))
+ }
+}
+
+#[derive(Debug)]
+pub struct TwoWayTransformer {
+ layers: Vec<TwoWayAttentionBlock>,
+ final_attn_token_to_image: Attention,
+ norm_final_attn: LayerNorm,
+}
+
+impl TwoWayTransformer {
+ pub fn new(
+ depth: usize,
+ embedding_dim: usize,
+ num_heads: usize,
+ mlp_dim: usize,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let vb_l = vb.pp("layers");
+ let mut layers = Vec::with_capacity(depth);
+ for i in 0..depth {
+ let layer =
+ TwoWayAttentionBlock::new(embedding_dim, num_heads, mlp_dim, i == 0, vb_l.pp(i))?;
+ layers.push(layer)
+ }
+ let final_attn_token_to_image = Attention::new(
+ embedding_dim,
+ num_heads,
+ 2,
+ vb.pp("final_attn_token_to_image"),
+ )?;
+ let norm_final_attn = layer_norm(embedding_dim, 1e-5, vb.pp("norm_final_attn"))?;
+ Ok(Self {
+ layers,
+ final_attn_token_to_image,
+ norm_final_attn,
+ })
+ }
+
+ pub fn forward(
+ &self,
+ image_embedding: &Tensor,
+ image_pe: &Tensor,
+ point_embedding: &Tensor,
+ ) -> Result<(Tensor, Tensor)> {
+ let image_embedding = image_embedding.flatten_from(2)?.permute((0, 2, 1))?;
+ let image_pe = image_pe.flatten_from(2)?.permute((0, 2, 1))?;
+
+ let mut queries = point_embedding.clone();
+ let mut keys = image_embedding;
+
+ for layer in self.layers.iter() {
+ (queries, keys) = layer.forward(&queries, &keys, point_embedding, &image_pe)?
+ }
+
+ let q = (&queries + point_embedding)?;
+ let k = (&keys + image_pe)?;
+ let attn_out = self.final_attn_token_to_image.forward(&q, &k, &keys)?;
+ let queries = (queries + attn_out)?.apply(&self.norm_final_attn)?;
+
+ Ok((queries, keys))
+ }
+}
diff --git a/candle-transformers/src/object_detection.rs b/candle-transformers/src/object_detection.rs
new file mode 100644
index 00000000..ce579316
--- /dev/null
+++ b/candle-transformers/src/object_detection.rs
@@ -0,0 +1,52 @@
+/// A bounding box around an object.
+#[derive(Debug, Clone)]
+pub struct Bbox<D> {
+ pub xmin: f32,
+ pub ymin: f32,
+ pub xmax: f32,
+ pub ymax: f32,
+ pub confidence: f32,
+ pub data: D,
+}
+
+#[derive(Debug, Clone, Copy, PartialEq)]
+pub struct KeyPoint {
+ pub x: f32,
+ pub y: f32,
+ pub mask: f32,
+}
+
+/// Intersection over union of two bounding boxes.
+pub fn iou<D>(b1: &Bbox<D>, b2: &Bbox<D>) -> f32 {
+ let b1_area = (b1.xmax - b1.xmin + 1.) * (b1.ymax - b1.ymin + 1.);
+ let b2_area = (b2.xmax - b2.xmin + 1.) * (b2.ymax - b2.ymin + 1.);
+ let i_xmin = b1.xmin.max(b2.xmin);
+ let i_xmax = b1.xmax.min(b2.xmax);
+ let i_ymin = b1.ymin.max(b2.ymin);
+ let i_ymax = b1.ymax.min(b2.ymax);
+ let i_area = (i_xmax - i_xmin + 1.).max(0.) * (i_ymax - i_ymin + 1.).max(0.);
+ i_area / (b1_area + b2_area - i_area)
+}
+
+pub fn non_maximum_suppression<D>(bboxes: &mut [Vec<Bbox<D>>], threshold: f32) {
+ // Perform non-maximum suppression.
+ for bboxes_for_class in bboxes.iter_mut() {
+ bboxes_for_class.sort_by(|b1, b2| b2.confidence.partial_cmp(&b1.confidence).unwrap());
+ let mut current_index = 0;
+ for index in 0..bboxes_for_class.len() {
+ let mut drop = false;
+ for prev_index in 0..current_index {
+ let iou = iou(&bboxes_for_class[prev_index], &bboxes_for_class[index]);
+ if iou > threshold {
+ drop = true;
+ break;
+ }
+ }
+ if !drop {
+ bboxes_for_class.swap(current_index, index);
+ current_index += 1;
+ }
+ }
+ bboxes_for_class.truncate(current_index);
+ }
+}