summaryrefslogtreecommitdiff
path: root/candle-transformers/src
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src')
-rw-r--r--candle-transformers/src/models/gemma.rs380
-rw-r--r--candle-transformers/src/models/mod.rs1
2 files changed, 381 insertions, 0 deletions
diff --git a/candle-transformers/src/models/gemma.rs b/candle-transformers/src/models/gemma.rs
new file mode 100644
index 00000000..e2be8406
--- /dev/null
+++ b/candle-transformers/src/models/gemma.rs
@@ -0,0 +1,380 @@
+use std::sync::Arc;
+
+use candle::{DType, Device, Module, Result, Tensor, D};
+use candle_nn::{linear_no_bias, Linear, VarBuilder};
+
+fn default_max_position_embeddings() -> usize {
+ 4096
+}
+
+#[derive(serde::Deserialize, Debug, Clone)]
+pub struct Config {
+ pub attention_bias: bool,
+ pub head_dim: usize,
+ pub hidden_act: candle_nn::Activation,
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub num_attention_heads: usize,
+ pub num_hidden_layers: usize,
+ pub num_key_value_heads: usize,
+ pub rms_norm_eps: f64,
+ pub rope_theta: f64,
+ pub vocab_size: usize,
+
+ #[serde(default = "default_max_position_embeddings")]
+ pub max_position_embeddings: usize,
+}
+
+#[derive(Debug, Clone)]
+struct RmsNorm {
+ weight: Tensor,
+ eps: f64,
+}
+
+impl RmsNorm {
+ fn new(dim: usize, eps: f64, vb: VarBuilder) -> Result<Self> {
+ let weight = vb.get(dim, "weight")?;
+ Ok(Self { weight, eps })
+ }
+}
+
+impl Module for RmsNorm {
+ fn forward(&self, x: &Tensor) -> Result<Tensor> {
+ let x_dtype = x.dtype();
+ let internal_dtype = match x_dtype {
+ DType::F16 | DType::BF16 => DType::F32,
+ d => d,
+ };
+ let hidden_size = x.dim(D::Minus1)?;
+ let x = x.to_dtype(internal_dtype)?;
+ let norm_x = (x.sqr()?.sum_keepdim(D::Minus1)? / hidden_size as f64)?;
+ let x_normed = x.broadcast_div(&(norm_x + self.eps)?.sqrt()?)?;
+ x_normed
+ .to_dtype(x_dtype)?
+ .broadcast_mul(&(&self.weight + 1.0)?)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+fn rotate_half(xs: &Tensor) -> Result<Tensor> {
+ let last_dim = xs.dim(D::Minus1)?;
+ let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
+ let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
+ Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
+}
+
+impl RotaryEmbedding {
+ fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = cfg.head_dim;
+ let max_seq_len = cfg.max_position_embeddings;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(dtype)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ seqlen_offset: usize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
+ let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
+ let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
+ Ok((q_embed, k_embed))
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ gate_proj: Linear,
+ up_proj: Linear,
+ down_proj: Linear,
+ act_fn: candle_nn::Activation,
+}
+
+impl MLP {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let intermediate_sz = cfg.intermediate_size;
+ let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
+ let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
+ let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
+ Ok(Self {
+ gate_proj,
+ up_proj,
+ down_proj,
+ act_fn: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
+ let rhs = xs.apply(&self.up_proj)?;
+ (lhs * rhs)?.apply(&self.down_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_heads: usize,
+ num_kv_heads: usize,
+ num_kv_groups: usize,
+ head_dim: usize,
+ rotary_emb: Arc<RotaryEmbedding>,
+ kv_cache: Option<(Tensor, Tensor)>,
+}
+
+impl Attention {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads;
+ let num_kv_groups = num_heads / num_kv_heads;
+ let head_dim = cfg.head_dim;
+ let q_proj = linear_no_bias(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear_no_bias(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_heads,
+ num_kv_heads,
+ num_kv_groups,
+ head_dim,
+ rotary_emb,
+ kv_cache: None,
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_kv_groups;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let (b_sz, q_len, _) = xs.dims3()?;
+
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = query_states
+ .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let (query_states, key_states) =
+ self.rotary_emb
+ .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
+
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (key_states, value_states)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_output = {
+ let scale = 1f64 / f64::sqrt(self.head_dim as f64);
+ let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
+
+ let attn_weights = match attention_mask {
+ None => attn_weights,
+ Some(mask) => attn_weights.broadcast_add(mask)?,
+ };
+ let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
+ attn_weights.matmul(&value_states)?
+ };
+ attn_output
+ .transpose(1, 2)?
+ .reshape((b_sz, q_len, ()))?
+ .apply(&self.o_proj)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+#[derive(Debug, Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MLP,
+ input_layernorm: RmsNorm,
+ post_attention_layernorm: RmsNorm,
+}
+
+impl DecoderLayer {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
+ let mlp = MLP::new(cfg, vb.pp("mlp"))?;
+ let input_layernorm =
+ RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ post_attention_layernorm,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.input_layernorm.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
+ residual + xs
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embed_tokens: candle_nn::Embedding,
+ layers: Vec<DecoderLayer>,
+ norm: RmsNorm,
+ lm_head: Linear,
+ device: Device,
+ dtype: DType,
+ hidden_size: usize,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_l = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
+ let lm_head = Linear::new(embed_tokens.embeddings().clone(), None);
+ Ok(Self {
+ embed_tokens,
+ layers,
+ norm,
+ lm_head,
+ device: vb.device().clone(),
+ dtype: vb.dtype(),
+ hidden_size: cfg.hidden_size,
+ })
+ }
+
+ fn prepare_decoder_attention_mask(
+ &self,
+ b_size: usize,
+ tgt_len: usize,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let mask: Vec<_> = (0..tgt_len)
+ .flat_map(|i| (0..tgt_len).map(move |j| if i < j { f32::NEG_INFINITY } else { 0. }))
+ .collect();
+ let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
+ let mask = if seqlen_offset > 0 {
+ let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
+ Tensor::cat(&[&mask0, &mask], D::Minus1)?
+ } else {
+ mask
+ };
+ mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
+ .to_dtype(self.dtype)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (b_size, seq_len) = input_ids.dims2()?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
+ Some(mask)
+ };
+ let xs = self.embed_tokens.forward(input_ids)?;
+ let mut xs = (xs * (self.hidden_size as f64).sqrt())?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm)?
+ .apply(&self.lm_head)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ for layer in self.layers.iter_mut() {
+ layer.clear_kv_cache()
+ }
+ }
+}
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 8eab4744..bb59a53f 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -9,6 +9,7 @@ pub mod dinov2;
pub mod distilbert;
pub mod efficientnet;
pub mod falcon;
+pub mod gemma;
pub mod jina_bert;
pub mod llama;
pub mod llama2_c;