summaryrefslogtreecommitdiff
path: root/candle-transformers/src
diff options
context:
space:
mode:
Diffstat (limited to 'candle-transformers/src')
-rw-r--r--candle-transformers/src/models/mod.rs1
-rw-r--r--candle-transformers/src/models/qwen2_moe.rs488
2 files changed, 489 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs
index 6fbc1844..980ba535 100644
--- a/candle-transformers/src/models/mod.rs
+++ b/candle-transformers/src/models/mod.rs
@@ -40,6 +40,7 @@ pub mod quantized_rwkv_v6;
pub mod quantized_stable_lm;
pub mod quantized_t5;
pub mod qwen2;
+pub mod qwen2_moe;
pub mod repvgg;
pub mod resnet;
pub mod rwkv_v5;
diff --git a/candle-transformers/src/models/qwen2_moe.rs b/candle-transformers/src/models/qwen2_moe.rs
new file mode 100644
index 00000000..d6566e90
--- /dev/null
+++ b/candle-transformers/src/models/qwen2_moe.rs
@@ -0,0 +1,488 @@
+use crate::models::with_tracing::{linear, linear_no_bias, Linear, RmsNorm};
+use candle::{DType, Device, Module, Result, Tensor, D};
+use candle_nn::{Activation, VarBuilder};
+use std::sync::Arc;
+
+#[derive(Debug, Clone, PartialEq, serde::Deserialize)]
+pub struct Config {
+ pub vocab_size: usize,
+ pub hidden_size: usize,
+ pub intermediate_size: usize,
+ pub num_hidden_layers: usize,
+ pub num_attention_heads: usize,
+ pub num_key_value_heads: usize,
+ pub max_position_embeddings: usize,
+ pub sliding_window: usize,
+ pub max_window_layers: usize,
+ pub tie_word_embeddings: bool,
+ pub rope_theta: f64,
+ pub rms_norm_eps: f64,
+ pub use_sliding_window: bool,
+ pub hidden_act: Activation,
+ pub decoder_sparse_step: usize,
+ pub moe_intermediate_size: usize,
+ pub shared_expert_intermediate_size: usize,
+ pub num_experts_per_tok: usize,
+ pub num_experts: usize,
+ pub norm_topk_prob: bool,
+}
+
+#[derive(Debug, Clone)]
+struct RotaryEmbedding {
+ sin: Tensor,
+ cos: Tensor,
+}
+
+fn rotate_half(xs: &Tensor) -> Result<Tensor> {
+ let last_dim = xs.dim(D::Minus1)?;
+ let xs1 = xs.narrow(D::Minus1, 0, last_dim / 2)?;
+ let xs2 = xs.narrow(D::Minus1, last_dim / 2, last_dim - last_dim / 2)?;
+ Tensor::cat(&[&xs2.neg()?, &xs1], D::Minus1)
+}
+
+impl RotaryEmbedding {
+ fn new(dtype: DType, cfg: &Config, dev: &Device) -> Result<Self> {
+ let dim = cfg.hidden_size / cfg.num_attention_heads;
+ let max_seq_len = cfg.max_position_embeddings;
+ let inv_freq: Vec<_> = (0..dim)
+ .step_by(2)
+ .map(|i| 1f32 / cfg.rope_theta.powf(i as f64 / dim as f64) as f32)
+ .collect();
+ let inv_freq_len = inv_freq.len();
+ let inv_freq = Tensor::from_vec(inv_freq, (1, inv_freq_len), dev)?.to_dtype(dtype)?;
+ let t = Tensor::arange(0u32, max_seq_len as u32, dev)?
+ .to_dtype(dtype)?
+ .reshape((max_seq_len, 1))?;
+ let freqs = t.matmul(&inv_freq)?;
+ let freqs = Tensor::cat(&[&freqs, &freqs], D::Minus1)?;
+ Ok(Self {
+ sin: freqs.sin()?,
+ cos: freqs.cos()?,
+ })
+ }
+
+ fn apply_rotary_emb_qkv(
+ &self,
+ q: &Tensor,
+ k: &Tensor,
+ seqlen_offset: usize,
+ ) -> Result<(Tensor, Tensor)> {
+ let (_b_sz, _h, seq_len, _n_embd) = q.dims4()?;
+ let cos = self.cos.narrow(0, seqlen_offset, seq_len)?;
+ let sin = self.sin.narrow(0, seqlen_offset, seq_len)?;
+ let cos = cos.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let sin = sin.unsqueeze(0)?.unsqueeze(0)?; // (1, 1, seq_len, dim)
+ let q_embed = (q.broadcast_mul(&cos)? + rotate_half(q)?.broadcast_mul(&sin))?;
+ let k_embed = (k.broadcast_mul(&cos)? + rotate_half(k)?.broadcast_mul(&sin))?;
+ Ok((q_embed, k_embed))
+ }
+}
+
+#[derive(Debug, Clone)]
+#[allow(clippy::upper_case_acronyms)]
+struct MLP {
+ gate_proj: Linear,
+ up_proj: Linear,
+ down_proj: Linear,
+ act_fn: Activation,
+}
+
+impl MLP {
+ fn new(intermediate_sz: usize, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let gate_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("gate_proj"))?;
+ let up_proj = linear_no_bias(hidden_sz, intermediate_sz, vb.pp("up_proj"))?;
+ let down_proj = linear_no_bias(intermediate_sz, hidden_sz, vb.pp("down_proj"))?;
+ Ok(Self {
+ gate_proj,
+ up_proj,
+ down_proj,
+ act_fn: cfg.hidden_act,
+ })
+ }
+}
+
+impl Module for MLP {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let lhs = xs.apply(&self.gate_proj)?.apply(&self.act_fn)?;
+ let rhs = xs.apply(&self.up_proj)?;
+ (lhs * rhs)?.apply(&self.down_proj)
+ }
+}
+
+#[derive(Debug, Clone)]
+struct Attention {
+ q_proj: Linear,
+ k_proj: Linear,
+ v_proj: Linear,
+ o_proj: Linear,
+ num_heads: usize,
+ num_kv_heads: usize,
+ num_kv_groups: usize,
+ head_dim: usize,
+ hidden_size: usize,
+ rotary_emb: Arc<RotaryEmbedding>,
+ kv_cache: Option<(Tensor, Tensor)>,
+}
+
+impl Attention {
+ fn new(rotary_emb: Arc<RotaryEmbedding>, cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let hidden_sz = cfg.hidden_size;
+ let num_heads = cfg.num_attention_heads;
+ let num_kv_heads = cfg.num_key_value_heads;
+ let num_kv_groups = num_heads / num_kv_heads;
+ let head_dim = hidden_sz / num_heads;
+ let q_proj = linear(hidden_sz, num_heads * head_dim, vb.pp("q_proj"))?;
+ let k_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("k_proj"))?;
+ let v_proj = linear(hidden_sz, num_kv_heads * head_dim, vb.pp("v_proj"))?;
+ let o_proj = linear_no_bias(num_heads * head_dim, hidden_sz, vb.pp("o_proj"))?;
+ Ok(Self {
+ q_proj,
+ k_proj,
+ v_proj,
+ o_proj,
+ num_heads,
+ num_kv_heads,
+ num_kv_groups,
+ head_dim,
+ hidden_size: hidden_sz,
+ rotary_emb,
+ kv_cache: None,
+ })
+ }
+
+ fn repeat_kv(&self, xs: Tensor) -> Result<Tensor> {
+ let n_rep = self.num_kv_groups;
+ if n_rep == 1 {
+ Ok(xs)
+ } else {
+ let (b_sz, num_kv_heads, seq_len, head_dim) = xs.dims4()?;
+ xs.unsqueeze(2)?
+ .expand((b_sz, num_kv_heads, n_rep, seq_len, head_dim))?
+ .reshape((b_sz, num_kv_heads * n_rep, seq_len, head_dim))
+ }
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let (b_sz, q_len, _) = xs.dims3()?;
+
+ let query_states = self.q_proj.forward(xs)?;
+ let key_states = self.k_proj.forward(xs)?;
+ let value_states = self.v_proj.forward(xs)?;
+
+ let query_states = query_states
+ .reshape((b_sz, q_len, self.num_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let key_states = key_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+ let value_states = value_states
+ .reshape((b_sz, q_len, self.num_kv_heads, self.head_dim))?
+ .transpose(1, 2)?;
+
+ let (query_states, key_states) =
+ self.rotary_emb
+ .apply_rotary_emb_qkv(&query_states, &key_states, seqlen_offset)?;
+
+ let (key_states, value_states) = match &self.kv_cache {
+ None => (key_states, value_states),
+ Some((prev_k, prev_v)) => {
+ let key_states = Tensor::cat(&[prev_k, &key_states], 2)?;
+ let value_states = Tensor::cat(&[prev_v, &value_states], 2)?;
+ (key_states, value_states)
+ }
+ };
+ self.kv_cache = Some((key_states.clone(), value_states.clone()));
+
+ let key_states = self.repeat_kv(key_states)?.contiguous()?;
+ let value_states = self.repeat_kv(value_states)?.contiguous()?;
+
+ let attn_output = {
+ let scale = 1f64 / f64::sqrt(self.head_dim as f64);
+ let attn_weights = (query_states.matmul(&key_states.transpose(2, 3)?)? * scale)?;
+
+ let attn_weights = match attention_mask {
+ None => attn_weights,
+ Some(mask) => attn_weights.broadcast_add(mask)?,
+ };
+ let attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?;
+ attn_weights.matmul(&value_states)?
+ };
+ attn_output
+ .transpose(1, 2)?
+ .reshape((b_sz, q_len, self.hidden_size))?
+ .apply(&self.o_proj)
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.kv_cache = None
+ }
+}
+
+// https://github.com/huggingface/transformers/blob/536ea2aca234fb48c5c69769431d643b0d93b233/src/transformers/models/qwen2_moe/modeling_qwen2_moe.py#L800
+#[derive(Debug, Clone)]
+struct SparseMoeBlock {
+ gate: Linear,
+ experts: Vec<MLP>,
+ shared_expert: MLP,
+ shared_expert_gate: Linear,
+ norm_topk_prob: bool,
+ num_experts_per_tok: usize,
+}
+
+impl SparseMoeBlock {
+ fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let gate = linear_no_bias(cfg.hidden_size, cfg.num_experts, vb.pp("gate"))?;
+ let mut experts = Vec::with_capacity(cfg.num_experts);
+ let vb_e = vb.pp("experts");
+ for idx in 0..cfg.num_experts {
+ let expert = MLP::new(cfg.moe_intermediate_size, cfg, vb_e.pp(idx))?;
+ experts.push(expert)
+ }
+ let shared_expert = MLP::new(
+ cfg.shared_expert_intermediate_size,
+ cfg,
+ vb.pp("shared_expert"),
+ )?;
+ let shared_expert_gate = linear_no_bias(cfg.hidden_size, 1, vb.pp("shared_expert_gate"))?;
+ Ok(Self {
+ gate,
+ experts,
+ shared_expert,
+ shared_expert_gate,
+ norm_topk_prob: cfg.norm_topk_prob,
+ num_experts_per_tok: cfg.num_experts_per_tok,
+ })
+ }
+}
+
+impl Module for SparseMoeBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ let (b_size, seq_len, hidden_dim) = xs.dims3()?;
+ let xs = xs.reshape(((), hidden_dim))?;
+ let router_logits = xs.apply(&self.gate)?;
+ let routing_weights = candle_nn::ops::softmax_last_dim(&router_logits)?;
+
+ // In order to extract topk, we extract the data from the tensor and manipulate it
+ // directly. Maybe we will want to use some custom ops instead at some point.
+ let routing_weights = routing_weights.to_dtype(DType::F32)?.to_vec2::<f32>()?;
+
+ // routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
+ // top_x contains the row indexes to evaluate for each expert.
+ let mut top_x = vec![vec![]; self.experts.len()];
+ let mut selected_experts = vec![vec![]; self.experts.len()];
+ for (row_idx, rw) in routing_weights.iter().enumerate() {
+ let mut dst = (0..rw.len() as u32).collect::<Vec<u32>>();
+ dst.sort_by(|&i, &j| rw[j as usize].total_cmp(&rw[i as usize]));
+ let mut sum_routing_weights = 0f32;
+ for &expert_idx in dst.iter().take(self.num_experts_per_tok) {
+ let expert_idx = expert_idx as usize;
+ let routing_weight = rw[expert_idx];
+ sum_routing_weights += routing_weight;
+ top_x[expert_idx].push(row_idx as u32);
+ }
+ for &expert_idx in dst.iter().take(self.num_experts_per_tok) {
+ let expert_idx = expert_idx as usize;
+ let routing_weight = if self.norm_topk_prob {
+ rw[expert_idx] / sum_routing_weights
+ } else {
+ rw[expert_idx]
+ };
+ selected_experts[expert_idx].push(routing_weight)
+ }
+ }
+
+ let mut ys = xs.zeros_like()?;
+ for (expert_idx, expert_layer) in self.experts.iter().enumerate() {
+ let top_x = &top_x[expert_idx];
+ if top_x.is_empty() {
+ continue;
+ }
+ let top_x = Tensor::new(top_x.as_slice(), xs.device())?;
+ let selected_experts =
+ Tensor::new(selected_experts[expert_idx].as_slice(), xs.device())?
+ .reshape(((), 1))?
+ .to_dtype(xs.dtype())?;
+ // Index the correct hidden states and compute the expert hidden state for
+ // the current expert. We need to make sure to multiply the output hidden
+ // states by `routing_weights` on the corresponding tokens (top-1 and top-2)
+ let current_state = xs.index_select(&top_x, 0)?.reshape(((), hidden_dim))?;
+ // current_hidden_states = expert_layer(current_state, routing_weights[top_x_list, idx_list, None])
+ let current_hidden_states = expert_layer.forward(&current_state)?;
+ let current_hidden_states = current_hidden_states.broadcast_mul(&selected_experts)?;
+ ys = ys.index_add(&top_x, &current_hidden_states, 0)?;
+ }
+ let shared_expert_output = xs.apply(&self.shared_expert)?;
+ let shared_expert_output = shared_expert_output.broadcast_mul(&candle_nn::ops::sigmoid(
+ &xs.apply(&self.shared_expert_gate)?,
+ )?)?;
+ let ys = (ys + shared_expert_output)?;
+ let ys = ys.reshape((b_size, seq_len, hidden_dim))?;
+ Ok(ys)
+ }
+}
+
+#[derive(Debug, Clone)]
+enum MlpOrMoeBlock {
+ Mlp(MLP),
+ MoeBlock(SparseMoeBlock),
+}
+
+impl Module for MlpOrMoeBlock {
+ fn forward(&self, xs: &Tensor) -> Result<Tensor> {
+ match self {
+ Self::MoeBlock(m) => m.forward(xs),
+ Self::Mlp(m) => m.forward(xs),
+ }
+ }
+}
+
+#[derive(Debug, Clone)]
+struct DecoderLayer {
+ self_attn: Attention,
+ mlp: MlpOrMoeBlock,
+ input_layernorm: RmsNorm,
+ post_attention_layernorm: RmsNorm,
+}
+
+impl DecoderLayer {
+ fn new(
+ layer_idx: usize,
+ rotary_emb: Arc<RotaryEmbedding>,
+ cfg: &Config,
+ vb: VarBuilder,
+ ) -> Result<Self> {
+ let self_attn = Attention::new(rotary_emb, cfg, vb.pp("self_attn"))?;
+ let mlp = if cfg.num_experts > 0 && (layer_idx + 1) % cfg.decoder_sparse_step == 0 {
+ MlpOrMoeBlock::MoeBlock(SparseMoeBlock::new(cfg, vb.pp("mlp"))?)
+ } else {
+ MlpOrMoeBlock::Mlp(MLP::new(cfg.intermediate_size, cfg, vb.pp("mlp"))?)
+ };
+ let input_layernorm =
+ RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb.pp("input_layernorm"))?;
+ let post_attention_layernorm = RmsNorm::new(
+ cfg.hidden_size,
+ cfg.rms_norm_eps,
+ vb.pp("post_attention_layernorm"),
+ )?;
+ Ok(Self {
+ self_attn,
+ mlp,
+ input_layernorm,
+ post_attention_layernorm,
+ })
+ }
+
+ fn forward(
+ &mut self,
+ xs: &Tensor,
+ attention_mask: Option<&Tensor>,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ let residual = xs;
+ let xs = self.input_layernorm.forward(xs)?;
+ let xs = self.self_attn.forward(&xs, attention_mask, seqlen_offset)?;
+ let xs = (xs + residual)?;
+ let residual = &xs;
+ let xs = xs.apply(&self.post_attention_layernorm)?.apply(&self.mlp)?;
+ residual + xs
+ }
+
+ fn clear_kv_cache(&mut self) {
+ self.self_attn.clear_kv_cache()
+ }
+}
+
+#[derive(Debug, Clone)]
+pub struct Model {
+ embed_tokens: candle_nn::Embedding,
+ layers: Vec<DecoderLayer>,
+ norm: RmsNorm,
+ lm_head: Linear,
+ sliding_window: usize,
+ device: Device,
+ dtype: DType,
+}
+
+impl Model {
+ pub fn new(cfg: &Config, vb: VarBuilder) -> Result<Self> {
+ let vb_m = vb.pp("model");
+ let embed_tokens =
+ candle_nn::embedding(cfg.vocab_size, cfg.hidden_size, vb_m.pp("embed_tokens"))?;
+ let rotary_emb = Arc::new(RotaryEmbedding::new(vb.dtype(), cfg, vb_m.device())?);
+ let mut layers = Vec::with_capacity(cfg.num_hidden_layers);
+ let vb_l = vb_m.pp("layers");
+ for layer_idx in 0..cfg.num_hidden_layers {
+ let layer = DecoderLayer::new(layer_idx, rotary_emb.clone(), cfg, vb_l.pp(layer_idx))?;
+ layers.push(layer)
+ }
+ let norm = RmsNorm::new(cfg.hidden_size, cfg.rms_norm_eps, vb_m.pp("norm"))?;
+ let lm_head = linear_no_bias(cfg.hidden_size, cfg.vocab_size, vb.pp("lm_head"))?;
+ Ok(Self {
+ embed_tokens,
+ layers,
+ norm,
+ lm_head,
+ sliding_window: cfg.sliding_window,
+ device: vb.device().clone(),
+ dtype: vb.dtype(),
+ })
+ }
+
+ fn prepare_decoder_attention_mask(
+ &self,
+ b_size: usize,
+ tgt_len: usize,
+ seqlen_offset: usize,
+ ) -> Result<Tensor> {
+ // Sliding window mask?
+ let mask: Vec<_> = (0..tgt_len)
+ .flat_map(|i| {
+ (0..tgt_len).map(move |j| {
+ if i < j || j + self.sliding_window < i {
+ f32::NEG_INFINITY
+ } else {
+ 0.
+ }
+ })
+ })
+ .collect();
+ let mask = Tensor::from_slice(&mask, (tgt_len, tgt_len), &self.device)?;
+ let mask = if seqlen_offset > 0 {
+ let mask0 = Tensor::zeros((tgt_len, seqlen_offset), DType::F32, &self.device)?;
+ Tensor::cat(&[&mask0, &mask], D::Minus1)?
+ } else {
+ mask
+ };
+ mask.expand((b_size, 1, tgt_len, tgt_len + seqlen_offset))?
+ .to_dtype(self.dtype)
+ }
+
+ pub fn forward(&mut self, input_ids: &Tensor, seqlen_offset: usize) -> Result<Tensor> {
+ let (b_size, seq_len) = input_ids.dims2()?;
+ let attention_mask = if seq_len <= 1 {
+ None
+ } else {
+ let mask = self.prepare_decoder_attention_mask(b_size, seq_len, seqlen_offset)?;
+ Some(mask)
+ };
+ let mut xs = self.embed_tokens.forward(input_ids)?;
+ for layer in self.layers.iter_mut() {
+ xs = layer.forward(&xs, attention_mask.as_ref(), seqlen_offset)?
+ }
+ xs.narrow(1, seq_len - 1, 1)?
+ .apply(&self.norm)?
+ .apply(&self.lm_head)
+ }
+
+ pub fn clear_kv_cache(&mut self) {
+ for layer in self.layers.iter_mut() {
+ layer.clear_kv_cache()
+ }
+ }
+}