diff options
Diffstat (limited to 'candle-transformers/src')
-rw-r--r-- | candle-transformers/src/models/mixformer.rs | 20 | ||||
-rw-r--r-- | candle-transformers/src/models/mod.rs | 1 | ||||
-rw-r--r-- | candle-transformers/src/models/moondream.rs | 308 |
3 files changed, 329 insertions, 0 deletions
diff --git a/candle-transformers/src/models/mixformer.rs b/candle-transformers/src/models/mixformer.rs index f7eb0abe..edca8b9d 100644 --- a/candle-transformers/src/models/mixformer.rs +++ b/candle-transformers/src/models/mixformer.rs @@ -438,6 +438,26 @@ impl MixFormerSequentialForCausalLM { xs.narrow(1, seq_len - 1, 1)?.apply(&self.head)?.squeeze(1) } + pub fn forward_with_img(&mut self, xs: &Tensor, img_embeds: &Tensor) -> Result<Tensor> { + let _enter = self.span.enter(); + let xs = xs.apply(&self.embedding)?; + let mut xs = Tensor::cat(&[img_embeds.clone(), xs], 1)?; + let (_b_size, seq_len, _embds) = xs.dims3()?; + let mask = if seq_len <= 1 { + None + } else { + Some(get_mask(seq_len, xs.device())?) + }; + for block in self.blocks.iter_mut() { + xs = block.forward(&xs, mask.as_ref())? + } + let xs = xs + .narrow(1, seq_len - 1, 1)? + .apply(&self.head)? + .squeeze(1)?; + Ok(xs) + } + pub fn clear_kv_cache(&mut self) { self.blocks.iter_mut().for_each(|b| b.clear_kv_cache()) } diff --git a/candle-transformers/src/models/mod.rs b/candle-transformers/src/models/mod.rs index 980ba535..ed0e0de7 100644 --- a/candle-transformers/src/models/mod.rs +++ b/candle-transformers/src/models/mod.rs @@ -24,6 +24,7 @@ pub mod mistral; pub mod mixformer; pub mod mixtral; pub mod mobileone; +pub mod moondream; pub mod mpt; pub mod persimmon; pub mod phi; diff --git a/candle-transformers/src/models/moondream.rs b/candle-transformers/src/models/moondream.rs new file mode 100644 index 00000000..1172bf71 --- /dev/null +++ b/candle-transformers/src/models/moondream.rs @@ -0,0 +1,308 @@ +use crate::models::mixformer::{Config as PhiConfig, MixFormerSequentialForCausalLM as PhiModel}; +use candle::{IndexOp, Result, Tensor, D}; +use candle_nn::{layer_norm, linear_b, Linear, Module, VarBuilder}; + +pub struct Config { + pub phi_config: PhiConfig, + pub vision_config: VisionConfig, +} + +impl Config { + pub fn v2() -> Self { + Self { + phi_config: PhiConfig::v1_5(), + vision_config: VisionConfig::v2(), + } + } +} + +fn scaled_dot_product_attention(q: &Tensor, k: &Tensor, v: &Tensor) -> Result<Tensor> { + let dim = q.dim(D::Minus1)?; + let scale_factor = 1.0 / (dim as f64).sqrt(); + let k = k.transpose(D::Minus2, D::Minus1)?.contiguous()?; + let mut attn_weights = (q.contiguous()?.matmul(&k)? * scale_factor)?; + attn_weights = candle_nn::ops::softmax_last_dim(&attn_weights)?.contiguous()?; + let attn_weights = attn_weights.matmul(&v.contiguous()?)?; + Ok(attn_weights) +} + +#[derive(Debug, Clone, PartialEq, serde::Deserialize)] +pub struct VisionConfig { + image_embedding_dim: usize, + model_dim: usize, + hidden_dim: usize, + hidden_features: usize, + embed_len: usize, + embed_dim: usize, + num_blocks: usize, + num_heads: usize, + act: candle_nn::Activation, +} + +impl VisionConfig { + pub fn v2() -> Self { + Self { + image_embedding_dim: 1152, + model_dim: 2048, + hidden_dim: 2048 * 4, + hidden_features: 4304, + embed_len: 729, + embed_dim: 1152, + num_blocks: 27, + num_heads: 16, + act: candle_nn::Activation::Gelu, + } + } +} + +#[derive(Debug, Clone)] +struct LinearPatchEmbedding { + linear: Linear, +} + +impl LinearPatchEmbedding { + fn new(vb: VarBuilder) -> Result<Self> { + let linear = linear_b(588, 1152, true, vb.pp("linear"))?; + Ok(Self { linear }) + } +} + +impl Module for LinearPatchEmbedding { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.apply(&self.linear) + } +} + +#[derive(Debug, Clone)] +struct Attention { + num_heads: usize, + head_dim: usize, + qkv: Linear, + proj: Linear, +} + +impl Attention { + pub fn new(vb: VarBuilder, dim: usize, num_heads: usize) -> Result<Self> { + let qkv = linear_b(dim, dim * 3, true, vb.pp("qkv"))?; + let proj = linear_b(dim, dim, true, vb.pp("proj"))?; + Ok(Self { + num_heads, + head_dim: dim / num_heads, + qkv, + proj, + }) + } +} + +impl Module for Attention { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b, n, c) = xs.dims3()?; + let qkv = xs + .apply(&self.qkv)? + .reshape((b, n, 3, self.num_heads, self.head_dim))? + .permute((2, 0, 3, 1, 4))?; + let (q, k, v) = (qkv.i(0)?, qkv.i(1)?, qkv.i(2)?); + let attn_weights = scaled_dot_product_attention(&q, &k, &v)?; + let attn_weights = attn_weights.transpose(1, 2)?.reshape((b, n, c))?; + attn_weights.apply(&self.proj) + } +} + +#[derive(Debug, Clone)] +struct VitBlock { + attn: Attention, + mlp: Mlp, + norm1: candle_nn::LayerNorm, + norm2: candle_nn::LayerNorm, +} + +impl VitBlock { + fn new(vb: VarBuilder, dim: usize, num_heads: usize, cfg: &VisionConfig) -> Result<Self> { + let attn = Attention::new(vb.pp("attn"), dim, num_heads)?; + let mlp = Mlp::new(vb.pp("mlp"), dim, cfg.hidden_features, dim, cfg.act)?; + let norm1 = layer_norm(dim, 1e-5, vb.pp("norm1"))?; + let norm2 = layer_norm(dim, 1e-5, vb.pp("norm2"))?; + Ok(Self { + attn, + mlp, + norm1, + norm2, + }) + } +} + +impl Module for VitBlock { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let ys = xs.apply(&self.norm1)?.apply(&self.attn)?; + let xs = (xs + &ys)?; + let ys = xs.apply(&self.norm2)?.apply(&self.mlp)?; + let xs = (&xs + &ys)?; + Ok(xs) + } +} + +#[derive(Debug, Clone)] +struct VisionTransformer { + patch_embed: LinearPatchEmbedding, + pos_embed: Tensor, + blocks: Vec<VitBlock>, + norm: candle_nn::LayerNorm, +} + +impl VisionTransformer { + fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { + let patch_embed = LinearPatchEmbedding::new(vb.pp("patch_embed"))?; + let pos_embed = vb.get((1, cfg.embed_len, cfg.embed_dim), "pos_embed")?; + let blocks = (0..cfg.num_blocks) + .map(|i| { + VitBlock::new( + vb.pp(&format!("blocks.{}", i)), + cfg.embed_dim, + cfg.num_heads, + cfg, + ) + }) + .collect::<Result<_>>()?; + let norm = layer_norm(cfg.embed_dim, 1e-5, vb.pp("norm"))?; + Ok(Self { + patch_embed, + pos_embed, + blocks, + norm, + }) + } +} + +impl Module for VisionTransformer { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let mut xs = (&xs.apply(&self.patch_embed)? + &self.pos_embed)?; + for block in self.blocks.iter() { + xs = xs.apply(block)?; + } + xs.apply(&self.norm) + } +} + +#[derive(Debug, Clone)] +pub struct Encoder { + model: VisionTransformer, +} + +impl Encoder { + fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { + let model = VisionTransformer::new(cfg, vb.pp("model.visual"))?; + Ok(Self { model }) + } +} + +impl Module for Encoder { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.apply(&self.model) + } +} + +#[derive(Debug, Clone)] +struct Mlp { + fc1: Linear, + act: candle_nn::Activation, + fc2: Linear, +} + +impl Mlp { + fn new( + vb: VarBuilder, + in_features: usize, + hidden_features: usize, + out_features: usize, + act: candle_nn::Activation, + ) -> Result<Self> { + let fc1 = linear_b(in_features, hidden_features, true, vb.pp("fc1"))?; + let fc2 = linear_b(hidden_features, out_features, true, vb.pp("fc2"))?; + Ok(Self { fc1, act, fc2 }) + } +} + +impl Module for Mlp { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.apply(&self.fc1)?.apply(&self.act)?.apply(&self.fc2) + } +} + +#[derive(Debug, Clone)] +struct VisionProjection { + mlp: Mlp, +} + +impl VisionProjection { + fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { + let mlp = Mlp::new( + vb.pp("mlp"), + cfg.image_embedding_dim, + cfg.hidden_dim, + cfg.model_dim, + cfg.act, + )?; + Ok(Self { mlp }) + } +} + +impl Module for VisionProjection { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + xs.apply(&self.mlp) + } +} + +#[derive(Debug, Clone)] +pub struct VisionEncoder { + encoder: Encoder, + projection: VisionProjection, +} + +impl VisionEncoder { + pub fn new(cfg: &VisionConfig, vb: VarBuilder) -> Result<Self> { + let encoder = Encoder::new(cfg, vb.pp("encoder"))?; + let projection = VisionProjection::new(cfg, vb.pp("projection"))?; + Ok(Self { + encoder, + projection, + }) + } +} + +impl Module for VisionEncoder { + fn forward(&self, xs: &Tensor) -> Result<Tensor> { + let (b, c, hp1, wp2) = xs.dims4()?; + let (p1, p2) = (14, 14); + let h = hp1 / p1; + let w = wp2 / p2; + let xs = xs + .reshape((b, c, h, p1, h, p2))? + .permute((0, 2, 4, 1, 3, 5))? + .reshape((b, h * w, c * p1 * p2))?; + xs.apply(&self.encoder)?.apply(&self.projection) + } +} + +pub struct Model { + pub text_model: PhiModel, + pub vision_encoder: VisionEncoder, +} + +impl Model { + pub fn new(config: &Config, vb: VarBuilder) -> Result<Self> { + let text_model = PhiModel::new_v2(&config.phi_config, vb.pp("text_model"))?; + let vision_encoder = VisionEncoder::new(&config.vision_config, vb.pp("vision_encoder"))?; + Ok(Self { + text_model, + vision_encoder, + }) + } + + pub fn vision_encoder(&self) -> &VisionEncoder { + &self.vision_encoder + } + + pub fn text_model(&mut self) -> &mut PhiModel { + &mut self.text_model + } +} |