summaryrefslogtreecommitdiff
path: root/candle-wasm-examples/bert
diff options
context:
space:
mode:
Diffstat (limited to 'candle-wasm-examples/bert')
-rw-r--r--candle-wasm-examples/bert/src/bin/m.rs12
1 files changed, 11 insertions, 1 deletions
diff --git a/candle-wasm-examples/bert/src/bin/m.rs b/candle-wasm-examples/bert/src/bin/m.rs
index 92617f15..9e5cf913 100644
--- a/candle-wasm-examples/bert/src/bin/m.rs
+++ b/candle-wasm-examples/bert/src/bin/m.rs
@@ -55,11 +55,21 @@ impl Model {
Tensor::new(tokens.as_slice(), device)
})
.collect::<Result<Vec<_>, _>>()?;
+ let attention_mask: Vec<Tensor> = tokens
+ .iter()
+ .map(|tokens| {
+ let tokens = tokens.get_attention_mask().to_vec();
+ Tensor::new(tokens.as_slice(), device)
+ })
+ .collect::<Result<Vec<_>, _>>()?;
let token_ids = Tensor::stack(&token_ids, 0)?;
+ let attention_mask = Tensor::stack(&attention_mask, 0)?;
let token_type_ids = token_ids.zeros_like()?;
console_log!("running inference on batch {:?}", token_ids.shape());
- let embeddings = self.bert.forward(&token_ids, &token_type_ids)?;
+ let embeddings = self
+ .bert
+ .forward(&token_ids, &token_type_ids, Some(&attention_mask))?;
console_log!("generated embeddings {:?}", embeddings.shape());
// Apply some avg-pooling by taking the mean embedding value for all tokens (including padding)
let (_n_sentence, n_tokens, _hidden_size) = embeddings.dims3()?;