From 18d6db2180800dcc134ffabe8523a774c6a7f9a3 Mon Sep 17 00:00:00 2001 From: Ssslakter <67190162+Ssslakter@users.noreply.github.com> Date: Mon, 11 Sep 2023 02:36:29 +0700 Subject: more doc fixes (#804) --- candle-book/src/SUMMARY.md | 4 ++-- candle-book/src/guide/hello_world.md | 16 +++++++------- candle-book/src/inference/README.md | 7 ------ candle-book/src/inference/inference.md | 7 ++++++ candle-book/src/training/README.md | 39 ---------------------------------- candle-book/src/training/training.md | 39 ++++++++++++++++++++++++++++++++++ 6 files changed, 56 insertions(+), 56 deletions(-) delete mode 100644 candle-book/src/inference/README.md create mode 100644 candle-book/src/inference/inference.md delete mode 100644 candle-book/src/training/README.md create mode 100644 candle-book/src/training/training.md (limited to 'candle-book') diff --git a/candle-book/src/SUMMARY.md b/candle-book/src/SUMMARY.md index 8228da22..e92f298f 100644 --- a/candle-book/src/SUMMARY.md +++ b/candle-book/src/SUMMARY.md @@ -10,10 +10,10 @@ # Reference Guide -- [Running a model](inference/README.md) +- [Running a model](inference/inference.md) - [Using the hub](inference/hub.md) - [Error management](error_manage.md) -- [Training](training/README.md) +- [Training](training/training.md) - [MNIST](training/mnist.md) - [Fine-tuning]() - [Serialization]() diff --git a/candle-book/src/guide/hello_world.md b/candle-book/src/guide/hello_world.md index 74a147e7..b5b8d7b4 100644 --- a/candle-book/src/guide/hello_world.md +++ b/candle-book/src/guide/hello_world.md @@ -6,7 +6,7 @@ Open `src/main.rs` and fill in this content: ```rust # extern crate candle_core; -use candle_core::{DType, Device, Result, Tensor}; +use candle_core::{Device, Result, Tensor}; struct Model { first: Tensor, @@ -29,7 +29,7 @@ fn main() -> Result<()> { let second = Tensor::randn(0f32, 1.0, (100, 10), &device)?; let model = Model { first, second }; - let dummy_image = Tensor::zeros((1, 784), DType::F32, &device)?; + let dummy_image = Tensor::randn(0f32, 1.0, (1, 784), &device)?; let digit = model.forward(&dummy_image)?; println!("Digit {digit:?} digit"); @@ -50,7 +50,7 @@ the classical `Linear` layer. We can do as such ```rust # extern crate candle_core; -# use candle_core::{DType, Device, Result, Tensor}; +# use candle_core::{Device, Result, Tensor}; struct Linear{ weight: Tensor, bias: Tensor, @@ -80,7 +80,7 @@ This will change the model running code into a new function ```rust # extern crate candle_core; -# use candle_core::{DType, Device, Result, Tensor}; +# use candle_core::{Device, Result, Tensor}; # struct Linear{ # weight: Tensor, # bias: Tensor, @@ -111,7 +111,7 @@ fn main() -> Result<()> { // Creating a dummy model let weight = Tensor::randn(0f32, 1.0, (784, 100), &device)?; - let bias = Tensor::zeros((100, ), DType::F32, &device)?; + let bias = Tensor::randn(0f32, 1.0, (100, ), &device)?; let first = Linear{weight, bias}; let weight = Tensor::randn(0f32, 1.0, (100, 10), &device)?; let bias = Tensor::randn(0f32, 1.0, (10, ), &device)?; @@ -146,7 +146,7 @@ And rewrite our examples using it ```rust # extern crate candle_core; # extern crate candle_nn; -use candle_core::{DType, Device, Result, Tensor}; +use candle_core::{Device, Result, Tensor}; use candle_nn::{Linear, Module}; struct Model { @@ -189,7 +189,7 @@ Feel free to modify this example to use `Conv2d` to create a classical convnet i Now that we have the running dummy code we can get to more advanced topics: - [For PyTorch users](../guide/cheatsheet.md) -- [Running existing models](../inference/README.md) -- [Training models](../training/README.md) +- [Running existing models](../inference/inference.md) +- [Training models](../training/training.md) diff --git a/candle-book/src/inference/README.md b/candle-book/src/inference/README.md deleted file mode 100644 index 1b75a310..00000000 --- a/candle-book/src/inference/README.md +++ /dev/null @@ -1,7 +0,0 @@ -# Running a model - - -In order to run an existing model, you will need to download and use existing weights. -Most models are already available on https://huggingface.co/ in [`safetensors`](https://github.com/huggingface/safetensors) format. - -Let's get started by running an old model : `bert-base-uncased`. diff --git a/candle-book/src/inference/inference.md b/candle-book/src/inference/inference.md new file mode 100644 index 00000000..1b75a310 --- /dev/null +++ b/candle-book/src/inference/inference.md @@ -0,0 +1,7 @@ +# Running a model + + +In order to run an existing model, you will need to download and use existing weights. +Most models are already available on https://huggingface.co/ in [`safetensors`](https://github.com/huggingface/safetensors) format. + +Let's get started by running an old model : `bert-base-uncased`. diff --git a/candle-book/src/training/README.md b/candle-book/src/training/README.md deleted file mode 100644 index d68a917e..00000000 --- a/candle-book/src/training/README.md +++ /dev/null @@ -1,39 +0,0 @@ -# Training - - -Training starts with data. We're going to use the huggingface hub and -start with the Hello world dataset of machine learning, MNIST. - -Let's start with downloading `MNIST` from [huggingface](https://huggingface.co/datasets/mnist). - -This requires [`hf-hub`](https://github.com/huggingface/hf-hub). -```bash -cargo add hf-hub -``` - -This is going to be very hands-on for now. - -```rust,ignore -{{#include ../../../candle-examples/src/lib.rs:book_training_1}} -``` - -This uses the standardized `parquet` files from the `refs/convert/parquet` branch on every dataset. -Our handles are now [`parquet::file::serialized_reader::SerializedFileReader`]. - -We can inspect the content of the files with: - -```rust,ignore -{{#include ../../../candle-examples/src/lib.rs:book_training_2}} -``` - -You should see something like: - -```bash -Column id 1, name label, value 6 -Column id 0, name image, value {bytes: [137, ....] -Column id 1, name label, value 8 -Column id 0, name image, value {bytes: [137, ....] -``` - -So each row contains 2 columns (image, label) with image being saved as bytes. -Let's put them into a useful struct. diff --git a/candle-book/src/training/training.md b/candle-book/src/training/training.md new file mode 100644 index 00000000..d68a917e --- /dev/null +++ b/candle-book/src/training/training.md @@ -0,0 +1,39 @@ +# Training + + +Training starts with data. We're going to use the huggingface hub and +start with the Hello world dataset of machine learning, MNIST. + +Let's start with downloading `MNIST` from [huggingface](https://huggingface.co/datasets/mnist). + +This requires [`hf-hub`](https://github.com/huggingface/hf-hub). +```bash +cargo add hf-hub +``` + +This is going to be very hands-on for now. + +```rust,ignore +{{#include ../../../candle-examples/src/lib.rs:book_training_1}} +``` + +This uses the standardized `parquet` files from the `refs/convert/parquet` branch on every dataset. +Our handles are now [`parquet::file::serialized_reader::SerializedFileReader`]. + +We can inspect the content of the files with: + +```rust,ignore +{{#include ../../../candle-examples/src/lib.rs:book_training_2}} +``` + +You should see something like: + +```bash +Column id 1, name label, value 6 +Column id 0, name image, value {bytes: [137, ....] +Column id 1, name label, value 8 +Column id 0, name image, value {bytes: [137, ....] +``` + +So each row contains 2 columns (image, label) with image being saved as bytes. +Let's put them into a useful struct. -- cgit v1.2.3