#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::convnext; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { Atto, Femto, Pico, Nano, Tiny, Small, Base, Large, AttoV2, FemtoV2, PicoV2, NanoV2, TinyV2, BaseV2, LargeV2, XLarge, Huge, } impl Which { fn model_filename(&self) -> String { let name = match self { Self::Atto => "convnext_atto.d2_in1k", Self::Femto => "convnext_femto.d1_in1k", Self::Pico => "convnext_pico.d1_in1k", Self::Nano => "convnext_nano.d1h_in1k", Self::Tiny => "convnext_tiny.fb_in1k", Self::Small => "convnext_small.fb_in1k", Self::Base => "convnext_base.fb_in1k", Self::Large => "convnext_large.fb_in1k", Self::AttoV2 => "convnextv2_atto.fcmae_ft_in1k", Self::FemtoV2 => "convnextv2_femto.fcmae_ft_in1k", Self::PicoV2 => "convnextv2_pico.fcmae_ft_in1k", Self::NanoV2 => "convnextv2_nano.fcmae_ft_in1k", Self::TinyV2 => "convnextv2_tiny.fcmae_ft_in1k", Self::BaseV2 => "convnextv2_base.fcmae_ft_in1k", Self::LargeV2 => "convnextv2_large.fcmae_ft_in1k", Self::XLarge => "convnext_xlarge.fb_in22k_ft_in1k", Self::Huge => "convnextv2_huge.fcmae_ft_in1k", }; format!("timm/{name}") } fn config(&self) -> convnext::Config { match self { Self::Atto | Self::AttoV2 => convnext::Config::atto(), Self::Femto | Self::FemtoV2 => convnext::Config::femto(), Self::Pico | Self::PicoV2 => convnext::Config::pico(), Self::Nano | Self::NanoV2 => convnext::Config::nano(), Self::Tiny | Self::TinyV2 => convnext::Config::tiny(), Self::Small => convnext::Config::small(), Self::Base | Self::BaseV2 => convnext::Config::base(), Self::Large | Self::LargeV2 => convnext::Config::large(), Self::XLarge => convnext::Config::xlarge(), Self::Huge => convnext::Config::huge(), } } } #[derive(Parser)] struct Args { #[arg(long)] model: Option, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(value_enum, long, default_value_t=Which::Tiny)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let model_name = args.which.model_filename(); let api = hf_hub::api::sync::Api::new()?; let api = api.model(model_name); api.get("model.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = convnext::convnext(&args.which.config(), 1000, vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::()?; let mut prs = prs.iter().enumerate().collect::>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }