//! EfficientNet implementation. //! //! https://arxiv.org/abs/1905.11946 #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::efficientnet::{EfficientNet, MBConvConfig}; use clap::{Parser, ValueEnum}; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { B0, B1, B2, B3, B4, B5, B6, B7, } #[derive(Parser)] struct Args { #[arg(long)] model: Option, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Variant of the model to use. #[arg(value_enum, long, default_value_t = Which::B2)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let api = hf_hub::api::sync::Api::new()?; let api = api.model("lmz/candle-efficientnet".into()); let filename = match args.which { Which::B0 => "efficientnet-b0.safetensors", Which::B1 => "efficientnet-b1.safetensors", Which::B2 => "efficientnet-b2.safetensors", Which::B3 => "efficientnet-b3.safetensors", Which::B4 => "efficientnet-b4.safetensors", Which::B5 => "efficientnet-b5.safetensors", Which::B6 => "efficientnet-b6.safetensors", Which::B7 => "efficientnet-b7.safetensors", }; api.get(filename)? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let cfg = match args.which { Which::B0 => MBConvConfig::b0(), Which::B1 => MBConvConfig::b1(), Which::B2 => MBConvConfig::b2(), Which::B3 => MBConvConfig::b3(), Which::B4 => MBConvConfig::b4(), Which::B5 => MBConvConfig::b5(), Which::B6 => MBConvConfig::b6(), Which::B7 => MBConvConfig::b7(), }; let model = EfficientNet::new(vb, cfg, candle_examples::imagenet::CLASS_COUNT as usize)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::()?; let mut prs = prs.iter().enumerate().collect::>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }