//! EVA-02: Explore the limits of Visual representation at scAle //! https://github.com/baaivision/EVA #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::Parser; use candle::{DType, Device, IndexOp, Result, Tensor, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::eva2; /// Loads an image from disk using the image crate, this returns a tensor with shape /// (3, 448, 448). OpenAI normalization is applied. pub fn load_image448_openai_norm<P: AsRef<std::path::Path>>(p: P) -> Result<Tensor> { let img = image::ImageReader::open(p)? .decode() .map_err(candle::Error::wrap)? .resize_to_fill(448, 448, image::imageops::FilterType::Triangle); let img = img.to_rgb8(); let data = img.into_raw(); let data = Tensor::from_vec(data, (448, 448, 3), &Device::Cpu)?.permute((2, 0, 1))?; let mean = Tensor::new(&[0.48145466f32, 0.4578275, 0.40821073], &Device::Cpu)?.reshape((3, 1, 1))?; let std = Tensor::new(&[0.26862954f32, 0.261_302_6, 0.275_777_1], &Device::Cpu)? .reshape((3, 1, 1))?; (data.to_dtype(candle::DType::F32)? / 255.)? .broadcast_sub(&mean)? .broadcast_div(&std) } #[derive(Parser)] struct Args { #[arg(long)] model: Option<String>, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = load_image448_openai_norm(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let api = hf_hub::api::sync::Api::new()?; let api = api.model("vincent-espitalier/candle-eva2".into()); api.get("eva02_base_patch14_448.mim_in22k_ft_in22k_in1k_adapted.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = eva2::vit_base(vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::<f32>()?; let mut prs = prs.iter().enumerate().collect::<Vec<_>>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }