#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::{Error as E, Result}; use clap::Parser; use candle_transformers::models::gemma::{Config as Config1, Model as Model1}; use candle_transformers::models::gemma2::{Config as Config2, Model as Model2}; use candle::{DType, Device, Tensor}; use candle_examples::token_output_stream::TokenOutputStream; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use hf_hub::{api::sync::Api, Repo, RepoType}; use tokenizers::Tokenizer; #[derive(Clone, Debug, Copy, PartialEq, Eq, clap::ValueEnum)] enum Which { #[value(name = "2b")] Base2B, #[value(name = "7b")] Base7B, #[value(name = "2b-it")] Instruct2B, #[value(name = "7b-it")] Instruct7B, #[value(name = "1.1-2b-it")] InstructV1_1_2B, #[value(name = "1.1-7b-it")] InstructV1_1_7B, #[value(name = "code-2b")] CodeBase2B, #[value(name = "code-7b")] CodeBase7B, #[value(name = "code-2b-it")] CodeInstruct2B, #[value(name = "code-7b-it")] CodeInstruct7B, #[value(name = "2-2b")] BaseV2_2B, #[value(name = "2-2b-it")] InstructV2_2B, #[value(name = "2-9b")] BaseV2_9B, #[value(name = "2-9b-it")] InstructV2_9B, } impl Which { fn is_v1(&self) -> bool { match self { Self::Base2B | Self::Base7B | Self::Instruct2B | Self::Instruct7B | Self::InstructV1_1_2B | Self::InstructV1_1_7B | Self::CodeBase2B | Self::CodeBase7B | Self::CodeInstruct2B | Self::CodeInstruct7B => true, Self::BaseV2_2B | Self::InstructV2_2B | Self::BaseV2_9B | Self::InstructV2_9B => false, } } } enum Model { V1(Model1), V2(Model2), } impl Model { fn forward(&mut self, input_ids: &Tensor, pos: usize) -> candle::Result { match self { Self::V1(m) => m.forward(input_ids, pos), Self::V2(m) => m.forward(input_ids, pos), } } } struct TextGeneration { model: Model, device: Device, tokenizer: TokenOutputStream, logits_processor: LogitsProcessor, repeat_penalty: f32, repeat_last_n: usize, } impl TextGeneration { #[allow(clippy::too_many_arguments)] fn new( model: Model, tokenizer: Tokenizer, seed: u64, temp: Option, top_p: Option, repeat_penalty: f32, repeat_last_n: usize, device: &Device, ) -> Self { let logits_processor = LogitsProcessor::new(seed, temp, top_p); Self { model, tokenizer: TokenOutputStream::new(tokenizer), logits_processor, repeat_penalty, repeat_last_n, device: device.clone(), } } fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { use std::io::Write; self.tokenizer.clear(); let mut tokens = self .tokenizer .tokenizer() .encode(prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); for &t in tokens.iter() { if let Some(t) = self.tokenizer.next_token(t)? { print!("{t}") } } std::io::stdout().flush()?; let mut generated_tokens = 0usize; let eos_token = match self.tokenizer.get_token("") { Some(token) => token, None => anyhow::bail!("cannot find the token"), }; let start_gen = std::time::Instant::now(); for index in 0..sample_len { let context_size = if index > 0 { 1 } else { tokens.len() }; let start_pos = tokens.len().saturating_sub(context_size); let ctxt = &tokens[start_pos..]; let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; let logits = self.model.forward(&input, start_pos)?; let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?; let logits = if self.repeat_penalty == 1. { logits } else { let start_at = tokens.len().saturating_sub(self.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; tokens.push(next_token); generated_tokens += 1; if next_token == eos_token { break; } if let Some(t) = self.tokenizer.next_token(next_token)? { print!("{t}"); std::io::stdout().flush()?; } } let dt = start_gen.elapsed(); if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? { print!("{rest}"); } std::io::stdout().flush()?; println!( "\n{generated_tokens} tokens generated ({:.2} token/s)", generated_tokens as f64 / dt.as_secs_f64(), ); Ok(()) } } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, #[arg(long)] prompt: String, /// The temperature used to generate samples. #[arg(long)] temperature: Option, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option, /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, /// The length of the sample to generate (in tokens). #[arg(long, short = 'n', default_value_t = 10000)] sample_len: usize, #[arg(long)] model_id: Option, #[arg(long, default_value = "main")] revision: String, #[arg(long)] tokenizer_file: Option, #[arg(long)] config_file: Option, #[arg(long)] weight_files: Option, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, /// The model to use. #[arg(long, default_value = "2-2b")] which: Which, #[arg(long)] use_flash_attn: bool, } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; println!( "avx: {}, neon: {}, simd128: {}, f16c: {}", candle::utils::with_avx(), candle::utils::with_neon(), candle::utils::with_simd128(), candle::utils::with_f16c() ); println!( "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", args.temperature.unwrap_or(0.), args.repeat_penalty, args.repeat_last_n ); let start = std::time::Instant::now(); let api = Api::new()?; let model_id = match &args.model_id { Some(model_id) => model_id.to_string(), None => match args.which { Which::InstructV1_1_2B => "google/gemma-1.1-2b-it".to_string(), Which::InstructV1_1_7B => "google/gemma-1.1-7b-it".to_string(), Which::Base2B => "google/gemma-2b".to_string(), Which::Base7B => "google/gemma-7b".to_string(), Which::Instruct2B => "google/gemma-2b-it".to_string(), Which::Instruct7B => "google/gemma-7b-it".to_string(), Which::CodeBase2B => "google/codegemma-2b".to_string(), Which::CodeBase7B => "google/codegemma-7b".to_string(), Which::CodeInstruct2B => "google/codegemma-2b-it".to_string(), Which::CodeInstruct7B => "google/codegemma-7b-it".to_string(), Which::BaseV2_2B => "google/gemma-2-2b".to_string(), Which::InstructV2_2B => "google/gemma-2-2b-it".to_string(), Which::BaseV2_9B => "google/gemma-2-9b".to_string(), Which::InstructV2_9B => "google/gemma-2-9b-it".to_string(), }, }; let repo = api.repo(Repo::with_revision( model_id, RepoType::Model, args.revision, )); let tokenizer_filename = match args.tokenizer_file { Some(file) => std::path::PathBuf::from(file), None => repo.get("tokenizer.json")?, }; let config_filename = match args.config_file { Some(file) => std::path::PathBuf::from(file), None => repo.get("config.json")?, }; let filenames = match args.weight_files { Some(files) => files .split(',') .map(std::path::PathBuf::from) .collect::>(), None => candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")?, }; println!("retrieved the files in {:?}", start.elapsed()); let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let start = std::time::Instant::now(); let device = candle_examples::device(args.cpu)?; let dtype = if device.is_cuda() { DType::BF16 } else { DType::F32 }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; let model = if args.which.is_v1() { let config: Config1 = serde_json::from_reader(std::fs::File::open(config_filename)?)?; let model = Model1::new(args.use_flash_attn, &config, vb)?; Model::V1(model) } else { let config: Config2 = serde_json::from_reader(std::fs::File::open(config_filename)?)?; let model = Model2::new(args.use_flash_attn, &config, vb)?; Model::V2(model) }; println!("loaded the model in {:?}", start.elapsed()); let mut pipeline = TextGeneration::new( model, tokenizer, args.seed, args.temperature, args.top_p, args.repeat_penalty, args.repeat_last_n, &device, ); pipeline.run(&args.prompt, args.sample_len)?; Ok(()) }