// This should reach 91.5% accuracy. #[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use rand::prelude::*; use candle::{DType, Result, Tensor, D}; use candle_nn::{loss, ops, Conv2d, Linear, Module, ModuleT, Optimizer, VarBuilder, VarMap}; const IMAGE_DIM: usize = 784; const LABELS: usize = 10; fn linear_z(in_dim: usize, out_dim: usize, vs: VarBuilder) -> Result<Linear> { let ws = vs.get_with_hints((out_dim, in_dim), "weight", candle_nn::init::ZERO)?; let bs = vs.get_with_hints(out_dim, "bias", candle_nn::init::ZERO)?; Ok(Linear::new(ws, Some(bs))) } trait Model: Sized { fn new(vs: VarBuilder) -> Result<Self>; fn forward(&self, xs: &Tensor) -> Result<Tensor>; } struct LinearModel { linear: Linear, } impl Model for LinearModel { fn new(vs: VarBuilder) -> Result<Self> { let linear = linear_z(IMAGE_DIM, LABELS, vs)?; Ok(Self { linear }) } fn forward(&self, xs: &Tensor) -> Result<Tensor> { self.linear.forward(xs) } } struct Mlp { ln1: Linear, ln2: Linear, } impl Model for Mlp { fn new(vs: VarBuilder) -> Result<Self> { let ln1 = candle_nn::linear(IMAGE_DIM, 100, vs.pp("ln1"))?; let ln2 = candle_nn::linear(100, LABELS, vs.pp("ln2"))?; Ok(Self { ln1, ln2 }) } fn forward(&self, xs: &Tensor) -> Result<Tensor> { let xs = self.ln1.forward(xs)?; let xs = xs.relu()?; self.ln2.forward(&xs) } } #[derive(Debug)] struct ConvNet { conv1: Conv2d, conv2: Conv2d, fc1: Linear, fc2: Linear, dropout: candle_nn::Dropout, } impl ConvNet { fn new(vs: VarBuilder) -> Result<Self> { let conv1 = candle_nn::conv2d(1, 32, 5, Default::default(), vs.pp("c1"))?; let conv2 = candle_nn::conv2d(32, 64, 5, Default::default(), vs.pp("c2"))?; let fc1 = candle_nn::linear(1024, 1024, vs.pp("fc1"))?; let fc2 = candle_nn::linear(1024, LABELS, vs.pp("fc2"))?; let dropout = candle_nn::Dropout::new(0.5); Ok(Self { conv1, conv2, fc1, fc2, dropout, }) } fn forward(&self, xs: &Tensor, train: bool) -> Result<Tensor> { let (b_sz, _img_dim) = xs.dims2()?; let xs = xs .reshape((b_sz, 1, 28, 28))? .apply(&self.conv1)? .max_pool2d(2)? .apply(&self.conv2)? .max_pool2d(2)? .flatten_from(1)? .apply(&self.fc1)? .relu()?; self.dropout.forward_t(&xs, train)?.apply(&self.fc2) } } struct TrainingArgs { learning_rate: f64, load: Option<String>, save: Option<String>, epochs: usize, } fn training_loop_cnn( m: candle_datasets::vision::Dataset, args: &TrainingArgs, ) -> anyhow::Result<()> { const BSIZE: usize = 64; let dev = candle::Device::cuda_if_available(0)?; let train_labels = m.train_labels; let train_images = m.train_images.to_device(&dev)?; let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?; let mut varmap = VarMap::new(); let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev); let model = ConvNet::new(vs.clone())?; if let Some(load) = &args.load { println!("loading weights from {load}"); varmap.load(load)? } let adamw_params = candle_nn::ParamsAdamW { lr: args.learning_rate, ..Default::default() }; let mut opt = candle_nn::AdamW::new(varmap.all_vars(), adamw_params)?; let test_images = m.test_images.to_device(&dev)?; let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?; let n_batches = train_images.dim(0)? / BSIZE; let mut batch_idxs = (0..n_batches).collect::<Vec<usize>>(); for epoch in 1..args.epochs { let mut sum_loss = 0f32; batch_idxs.shuffle(&mut thread_rng()); for batch_idx in batch_idxs.iter() { let train_images = train_images.narrow(0, batch_idx * BSIZE, BSIZE)?; let train_labels = train_labels.narrow(0, batch_idx * BSIZE, BSIZE)?; let logits = model.forward(&train_images, true)?; let log_sm = ops::log_softmax(&logits, D::Minus1)?; let loss = loss::nll(&log_sm, &train_labels)?; opt.backward_step(&loss)?; sum_loss += loss.to_vec0::<f32>()?; } let avg_loss = sum_loss / n_batches as f32; let test_logits = model.forward(&test_images, false)?; let sum_ok = test_logits .argmax(D::Minus1)? .eq(&test_labels)? .to_dtype(DType::F32)? .sum_all()? .to_scalar::<f32>()?; let test_accuracy = sum_ok / test_labels.dims1()? as f32; println!( "{epoch:4} train loss {:8.5} test acc: {:5.2}%", avg_loss, 100. * test_accuracy ); } if let Some(save) = &args.save { println!("saving trained weights in {save}"); varmap.save(save)? } Ok(()) } fn training_loop<M: Model>( m: candle_datasets::vision::Dataset, args: &TrainingArgs, ) -> anyhow::Result<()> { let dev = candle::Device::cuda_if_available(0)?; let train_labels = m.train_labels; let train_images = m.train_images.to_device(&dev)?; let train_labels = train_labels.to_dtype(DType::U32)?.to_device(&dev)?; let mut varmap = VarMap::new(); let vs = VarBuilder::from_varmap(&varmap, DType::F32, &dev); let model = M::new(vs.clone())?; if let Some(load) = &args.load { println!("loading weights from {load}"); varmap.load(load)? } let mut sgd = candle_nn::SGD::new(varmap.all_vars(), args.learning_rate)?; let test_images = m.test_images.to_device(&dev)?; let test_labels = m.test_labels.to_dtype(DType::U32)?.to_device(&dev)?; for epoch in 1..args.epochs { let logits = model.forward(&train_images)?; let log_sm = ops::log_softmax(&logits, D::Minus1)?; let loss = loss::nll(&log_sm, &train_labels)?; sgd.backward_step(&loss)?; let test_logits = model.forward(&test_images)?; let sum_ok = test_logits .argmax(D::Minus1)? .eq(&test_labels)? .to_dtype(DType::F32)? .sum_all()? .to_scalar::<f32>()?; let test_accuracy = sum_ok / test_labels.dims1()? as f32; println!( "{epoch:4} train loss: {:8.5} test acc: {:5.2}%", loss.to_scalar::<f32>()?, 100. * test_accuracy ); } if let Some(save) = &args.save { println!("saving trained weights in {save}"); varmap.save(save)? } Ok(()) } #[derive(ValueEnum, Clone)] enum WhichModel { Linear, Mlp, Cnn, } #[derive(Parser)] struct Args { #[clap(value_enum, default_value_t = WhichModel::Linear)] model: WhichModel, #[arg(long)] learning_rate: Option<f64>, #[arg(long, default_value_t = 200)] epochs: usize, /// The file where to save the trained weights, in safetensors format. #[arg(long)] save: Option<String>, /// The file where to load the trained weights from, in safetensors format. #[arg(long)] load: Option<String>, /// The directory where to load the dataset from, in ubyte format. #[arg(long)] local_mnist: Option<String>, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); // Load the dataset let m = if let Some(directory) = args.local_mnist { candle_datasets::vision::mnist::load_dir(directory)? } else { candle_datasets::vision::mnist::load()? }; println!("train-images: {:?}", m.train_images.shape()); println!("train-labels: {:?}", m.train_labels.shape()); println!("test-images: {:?}", m.test_images.shape()); println!("test-labels: {:?}", m.test_labels.shape()); let default_learning_rate = match args.model { WhichModel::Linear => 1., WhichModel::Mlp => 0.05, WhichModel::Cnn => 0.001, }; let training_args = TrainingArgs { epochs: args.epochs, learning_rate: args.learning_rate.unwrap_or(default_learning_rate), load: args.load, save: args.save, }; match args.model { WhichModel::Linear => training_loop::<LinearModel>(m, &training_args), WhichModel::Mlp => training_loop::<Mlp>(m, &training_args), WhichModel::Cnn => training_loop_cnn(m, &training_args), } }