# candle-mobilenetv4 [MobileNetV4 - Universal Models for the Mobile Ecosystem](https://arxiv.org/abs/2404.10518) This candle implementation uses pre-trained MobileNetV4 models from timm for inference. The classification head has been trained on the ImageNet dataset and returns the probabilities for the top-5 classes. ## Running an example ``` $ cargo run --example mobilenetv4 --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg --which medium loaded image Tensor[dims 3, 256, 256; f32] model built unicycle, monocycle : 20.18% mountain bike, all-terrain bike, off-roader: 19.77% bicycle-built-for-two, tandem bicycle, tandem: 15.91% crash helmet : 1.15% tricycle, trike, velocipede: 0.67% ```