## Using ONNX models in Candle This example demonstrates how to run [ONNX](https://github.com/onnx/onnx) based models in Candle. It contains small variants of two models, [SqueezeNet](https://arxiv.org/pdf/1602.07360.pdf) (default) and [EfficientNet](https://arxiv.org/pdf/1905.11946.pdf). You can run the examples with following commands: ```bash cargo run --example onnx --features=onnx --release -- --image candle-examples/examples/yolo-v8/assets/bike.jpg ``` Use the `--which` flag to specify explicitly which network to use, i.e. ```bash $ cargo run --example onnx --features=onnx --release -- --which squeeze-net --image candle-examples/examples/yolo-v8/assets/bike.jpg Finished release [optimized] target(s) in 0.21s Running `target/release/examples/onnx --which squeeze-net --image candle-examples/examples/yolo-v8/assets/bike.jpg` loaded image Tensor[dims 3, 224, 224; f32] unicycle, monocycle : 83.23% ballplayer, baseball player : 3.68% bearskin, busby, shako : 1.54% military uniform : 0.78% cowboy hat, ten-gallon hat : 0.76% ``` ```bash $ cargo run --example onnx --features=onnx --release -- --which efficient-net --image candle-examples/examples/yolo-v8/assets/bike.jpg Finished release [optimized] target(s) in 0.20s Running `target/release/examples/onnx --which efficient-net --image candle-examples/examples/yolo-v8/assets/bike.jpg` loaded image Tensor[dims 224, 224, 3; f32] bicycle-built-for-two, tandem bicycle, tandem : 99.16% mountain bike, all-terrain bike, off-roader : 0.60% unicycle, monocycle : 0.17% crash helmet : 0.02% alp : 0.02% ```