#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use std::io::Write; use std::path::PathBuf; use candle_transformers::models::quantized_t5 as t5; use anyhow::{Error as E, Result}; use candle::{Device, Tensor}; use candle_transformers::generation::LogitsProcessor; use clap::{Parser, ValueEnum}; use hf_hub::{api::sync::Api, api::sync::ApiRepo, Repo, RepoType}; use tokenizers::Tokenizer; #[derive(Clone, Debug, Copy, ValueEnum)] enum Which { T5Small, FlanT5Small, FlanT5Base, FlanT5Large, FlanT5Xl, FlanT5Xxl, } #[derive(Parser, Debug, Clone)] #[command(author, version, about, long_about = None)] struct Args { /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// The model repository to use on the HuggingFace hub. #[arg(long)] model_id: Option, #[arg(long)] revision: Option, #[arg(long)] weight_file: Option, #[arg(long)] config_file: Option, // Enable/disable decoding. #[arg(long, default_value = "false")] disable_cache: bool, /// Use this prompt, otherwise compute sentence similarities. #[arg(long)] prompt: String, /// The temperature used to generate samples. #[arg(long, default_value_t = 0.8)] temperature: f64, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, /// The model size to use. #[arg(long, default_value = "t5-small")] which: Which, } struct T5ModelBuilder { device: Device, config: t5::Config, weights_filename: PathBuf, } impl T5ModelBuilder { pub fn load(args: &Args) -> Result<(Self, Tokenizer)> { let device = Device::Cpu; let default_model = "lmz/candle-quantized-t5".to_string(); let (model_id, revision) = match (args.model_id.to_owned(), args.revision.to_owned()) { (Some(model_id), Some(revision)) => (model_id, revision), (Some(model_id), None) => (model_id, "main".to_string()), (None, Some(revision)) => (default_model, revision), (None, None) => (default_model, "main".to_string()), }; let repo = Repo::with_revision(model_id, RepoType::Model, revision); let api = Api::new()?; let api = api.repo(repo); let config_filename = match &args.config_file { Some(filename) => Self::get_local_or_remote_file(filename, &api)?, None => match args.which { Which::T5Small => api.get("config.json")?, Which::FlanT5Small => api.get("config-flan-t5-small.json")?, Which::FlanT5Base => api.get("config-flan-t5-base.json")?, Which::FlanT5Large => api.get("config-flan-t5-large.json")?, Which::FlanT5Xl => api.get("config-flan-t5-xl.json")?, Which::FlanT5Xxl => api.get("config-flan-t5-xxl.json")?, }, }; let tokenizer_filename = api.get("tokenizer.json")?; let weights_filename = match &args.weight_file { Some(filename) => Self::get_local_or_remote_file(filename, &api)?, None => match args.which { Which::T5Small => api.get("model.gguf")?, Which::FlanT5Small => api.get("model-flan-t5-small.gguf")?, Which::FlanT5Base => api.get("model-flan-t5-base.gguf")?, Which::FlanT5Large => api.get("model-flan-t5-large.gguf")?, Which::FlanT5Xl => api.get("model-flan-t5-xl.gguf")?, Which::FlanT5Xxl => api.get("model-flan-t5-xxl.gguf")?, }, }; let config = std::fs::read_to_string(config_filename)?; let mut config: t5::Config = serde_json::from_str(&config)?; config.use_cache = !args.disable_cache; let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; Ok(( Self { device, config, weights_filename, }, tokenizer, )) } pub fn build_model(&self) -> Result { let device = Device::Cpu; let vb = t5::VarBuilder::from_gguf(&self.weights_filename, &device)?; Ok(t5::T5ForConditionalGeneration::load(vb, &self.config)?) } fn get_local_or_remote_file(filename: &str, api: &ApiRepo) -> Result { let local_filename = std::path::PathBuf::from(filename); if local_filename.exists() { Ok(local_filename) } else { Ok(api.get(filename)?) } } } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; let (builder, mut tokenizer) = T5ModelBuilder::load(&args)?; let device = &builder.device; let tokenizer = tokenizer .with_padding(None) .with_truncation(None) .map_err(E::msg)?; let tokens = tokenizer .encode(args.prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); let input_token_ids = Tensor::new(&tokens[..], device)?.unsqueeze(0)?; let mut model = builder.build_model()?; let mut output_token_ids = [builder .config .decoder_start_token_id .unwrap_or(builder.config.pad_token_id) as u32] .to_vec(); let temperature = if args.temperature <= 0. { None } else { Some(args.temperature) }; let mut logits_processor = LogitsProcessor::new(299792458, temperature, args.top_p); let encoder_output = model.encode(&input_token_ids)?; let start = std::time::Instant::now(); for index in 0.. { if output_token_ids.len() > 512 { break; } let decoder_token_ids = if index == 0 || !builder.config.use_cache { Tensor::new(output_token_ids.as_slice(), device)?.unsqueeze(0)? } else { let last_token = *output_token_ids.last().unwrap(); Tensor::new(&[last_token], device)?.unsqueeze(0)? }; let logits = model .decode(&decoder_token_ids, &encoder_output)? .squeeze(0)?; let logits = if args.repeat_penalty == 1. { logits } else { let start_at = output_token_ids.len().saturating_sub(args.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, args.repeat_penalty, &output_token_ids[start_at..], )? }; let next_token_id = logits_processor.sample(&logits)?; if next_token_id as usize == builder.config.eos_token_id { break; } output_token_ids.push(next_token_id); if let Some(text) = tokenizer.id_to_token(next_token_id) { let text = text.replace('▁', " ").replace("<0x0A>", "\n"); print!("{text}"); std::io::stdout().flush()?; } } let dt = start.elapsed(); println!( "\n{} tokens generated ({:.2} token/s)\n", output_token_ids.len(), output_token_ids.len() as f64 / dt.as_secs_f64(), ); Ok(()) }