#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use clap::{Parser, ValueEnum}; use candle::{DType, IndexOp, D}; use candle_nn::{Module, VarBuilder}; use candle_transformers::models::repvgg; #[derive(Clone, Copy, Debug, ValueEnum)] enum Which { A0, A1, A2, B0, B1, B2, B3, B1G4, B2G4, B3G4, } impl Which { fn model_filename(&self) -> String { let name = match self { Self::A0 => "a0", Self::A1 => "a1", Self::A2 => "a2", Self::B0 => "b0", Self::B1 => "b1", Self::B2 => "b2", Self::B3 => "b3", Self::B1G4 => "b1g4", Self::B2G4 => "b2g4", Self::B3G4 => "b3g4", }; format!("timm/repvgg_{}.rvgg_in1k", name) } fn config(&self) -> repvgg::Config { match self { Self::A0 => repvgg::Config::a0(), Self::A1 => repvgg::Config::a1(), Self::A2 => repvgg::Config::a2(), Self::B0 => repvgg::Config::b0(), Self::B1 => repvgg::Config::b1(), Self::B2 => repvgg::Config::b2(), Self::B3 => repvgg::Config::b3(), Self::B1G4 => repvgg::Config::b1g4(), Self::B2G4 => repvgg::Config::b2g4(), Self::B3G4 => repvgg::Config::b3g4(), } } } #[derive(Parser)] struct Args { #[arg(long)] model: Option, #[arg(long)] image: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, #[arg(value_enum, long, default_value_t=Which::A0)] which: Which, } pub fn main() -> anyhow::Result<()> { let args = Args::parse(); let device = candle_examples::device(args.cpu)?; let image = candle_examples::imagenet::load_image224(args.image)?.to_device(&device)?; println!("loaded image {image:?}"); let model_file = match args.model { None => { let model_name = args.which.model_filename(); let api = hf_hub::api::sync::Api::new()?; let api = api.model(model_name); api.get("model.safetensors")? } Some(model) => model.into(), }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&[model_file], DType::F32, &device)? }; let model = repvgg::repvgg(&args.which.config(), 1000, vb)?; println!("model built"); let logits = model.forward(&image.unsqueeze(0)?)?; let prs = candle_nn::ops::softmax(&logits, D::Minus1)? .i(0)? .to_vec1::()?; let mut prs = prs.iter().enumerate().collect::>(); prs.sort_by(|(_, p1), (_, p2)| p2.total_cmp(p1)); for &(category_idx, pr) in prs.iter().take(5) { println!( "{:24}: {:.2}%", candle_examples::imagenet::CLASSES[category_idx], 100. * pr ); } Ok(()) }