#[cfg(feature = "accelerate")] extern crate accelerate_src; #[cfg(feature = "mkl")] extern crate intel_mkl_src; use candle_transformers::models::stable_diffusion; use anyhow::{Error as E, Result}; use candle::{DType, Device, IndexOp, Module, Tensor, D}; use clap::Parser; use stable_diffusion::vae::AutoEncoderKL; use tokenizers::Tokenizer; #[derive(Parser)] #[command(author, version, about, long_about = None)] struct Args { /// The prompt to be used for image generation. #[arg( long, default_value = "A very realistic photo of a rusty robot walking on a sandy beach" )] prompt: String, #[arg(long, default_value = "")] uncond_prompt: String, /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, /// The height in pixels of the generated image. #[arg(long)] height: Option, /// The width in pixels of the generated image. #[arg(long)] width: Option, /// The UNet weight file, in .safetensors format. #[arg(long, value_name = "FILE")] unet_weights: Option, /// The CLIP weight file, in .safetensors format. #[arg(long, value_name = "FILE")] clip_weights: Option, /// The VAE weight file, in .safetensors format. #[arg(long, value_name = "FILE")] vae_weights: Option, #[arg(long, value_name = "FILE")] /// The file specifying the tokenizer to used for tokenization. tokenizer: Option, /// The size of the sliced attention or 0 for automatic slicing (disabled by default) #[arg(long)] sliced_attention_size: Option, /// The number of steps to run the diffusion for. #[arg(long)] n_steps: Option, /// The number of samples to generate iteratively. #[arg(long, default_value_t = 1)] num_samples: usize, /// The numbers of samples to generate simultaneously. #[arg[long, default_value_t = 1]] bsize: usize, /// The name of the final image to generate. #[arg(long, value_name = "FILE", default_value = "sd_final.png")] final_image: String, #[arg(long, value_enum, default_value = "v2-1")] sd_version: StableDiffusionVersion, /// Generate intermediary images at each step. #[arg(long, action)] intermediary_images: bool, #[arg(long)] use_flash_attn: bool, #[arg(long)] use_f16: bool, #[arg(long)] guidance_scale: Option, #[arg(long, value_name = "FILE")] img2img: Option, /// The strength, indicates how much to transform the initial image. The /// value must be between 0 and 1, a value of 1 discards the initial image /// information. #[arg(long, default_value_t = 0.8)] img2img_strength: f64, /// The seed to use when generating random samples. #[arg(long)] seed: Option, } #[derive(Debug, Clone, Copy, clap::ValueEnum, PartialEq, Eq)] enum StableDiffusionVersion { V1_5, V2_1, Xl, Turbo, } #[derive(Debug, Clone, Copy, PartialEq, Eq)] enum ModelFile { Tokenizer, Tokenizer2, Clip, Clip2, Unet, Vae, } impl StableDiffusionVersion { fn repo(&self) -> &'static str { match self { Self::Xl => "stabilityai/stable-diffusion-xl-base-1.0", Self::V2_1 => "stabilityai/stable-diffusion-2-1", Self::V1_5 => "runwayml/stable-diffusion-v1-5", Self::Turbo => "stabilityai/sdxl-turbo", } } fn unet_file(&self, use_f16: bool) -> &'static str { match self { Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => { if use_f16 { "unet/diffusion_pytorch_model.fp16.safetensors" } else { "unet/diffusion_pytorch_model.safetensors" } } } } fn vae_file(&self, use_f16: bool) -> &'static str { match self { Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => { if use_f16 { "vae/diffusion_pytorch_model.fp16.safetensors" } else { "vae/diffusion_pytorch_model.safetensors" } } } } fn clip_file(&self, use_f16: bool) -> &'static str { match self { Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => { if use_f16 { "text_encoder/model.fp16.safetensors" } else { "text_encoder/model.safetensors" } } } } fn clip2_file(&self, use_f16: bool) -> &'static str { match self { Self::V1_5 | Self::V2_1 | Self::Xl | Self::Turbo => { if use_f16 { "text_encoder_2/model.fp16.safetensors" } else { "text_encoder_2/model.safetensors" } } } } } impl ModelFile { fn get( &self, filename: Option, version: StableDiffusionVersion, use_f16: bool, ) -> Result { use hf_hub::api::sync::Api; match filename { Some(filename) => Ok(std::path::PathBuf::from(filename)), None => { let (repo, path) = match self { Self::Tokenizer => { let tokenizer_repo = match version { StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 => { "openai/clip-vit-base-patch32" } StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo => { // This seems similar to the patch32 version except some very small // difference in the split regex. "openai/clip-vit-large-patch14" } }; (tokenizer_repo, "tokenizer.json") } Self::Tokenizer2 => { ("laion/CLIP-ViT-bigG-14-laion2B-39B-b160k", "tokenizer.json") } Self::Clip => (version.repo(), version.clip_file(use_f16)), Self::Clip2 => (version.repo(), version.clip2_file(use_f16)), Self::Unet => (version.repo(), version.unet_file(use_f16)), Self::Vae => { // Override for SDXL when using f16 weights. // See https://github.com/huggingface/candle/issues/1060 if matches!( version, StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo, ) && use_f16 { ( "madebyollin/sdxl-vae-fp16-fix", "diffusion_pytorch_model.safetensors", ) } else { (version.repo(), version.vae_file(use_f16)) } } }; let filename = Api::new()?.model(repo.to_string()).get(path)?; Ok(filename) } } } } fn output_filename( basename: &str, sample_idx: usize, num_samples: usize, timestep_idx: Option, ) -> String { let filename = if num_samples > 1 { match basename.rsplit_once('.') { None => format!("{basename}.{sample_idx}.png"), Some((filename_no_extension, extension)) => { format!("{filename_no_extension}.{sample_idx}.{extension}") } } } else { basename.to_string() }; match timestep_idx { None => filename, Some(timestep_idx) => match filename.rsplit_once('.') { None => format!("{filename}-{timestep_idx}.png"), Some((filename_no_extension, extension)) => { format!("{filename_no_extension}-{timestep_idx}.{extension}") } }, } } #[allow(clippy::too_many_arguments)] fn save_image( vae: &AutoEncoderKL, latents: &Tensor, vae_scale: f64, bsize: usize, idx: usize, final_image: &str, num_samples: usize, timestep_ids: Option, ) -> Result<()> { let images = vae.decode(&(latents / vae_scale)?)?; let images = ((images / 2.)? + 0.5)?.to_device(&Device::Cpu)?; let images = (images.clamp(0f32, 1.)? * 255.)?.to_dtype(DType::U8)?; for batch in 0..bsize { let image = images.i(batch)?; let image_filename = output_filename( final_image, (bsize * idx) + batch + 1, batch + num_samples, timestep_ids, ); candle_examples::save_image(&image, image_filename)?; } Ok(()) } #[allow(clippy::too_many_arguments)] fn text_embeddings( prompt: &str, uncond_prompt: &str, tokenizer: Option, clip_weights: Option, sd_version: StableDiffusionVersion, sd_config: &stable_diffusion::StableDiffusionConfig, use_f16: bool, device: &Device, dtype: DType, use_guide_scale: bool, first: bool, ) -> Result { let tokenizer_file = if first { ModelFile::Tokenizer } else { ModelFile::Tokenizer2 }; let tokenizer = tokenizer_file.get(tokenizer, sd_version, use_f16)?; let tokenizer = Tokenizer::from_file(tokenizer).map_err(E::msg)?; let pad_id = match &sd_config.clip.pad_with { Some(padding) => *tokenizer.get_vocab(true).get(padding.as_str()).unwrap(), None => *tokenizer.get_vocab(true).get("<|endoftext|>").unwrap(), }; println!("Running with prompt \"{prompt}\"."); let mut tokens = tokenizer .encode(prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); if tokens.len() > sd_config.clip.max_position_embeddings { anyhow::bail!( "the prompt is too long, {} > max-tokens ({})", tokens.len(), sd_config.clip.max_position_embeddings ) } while tokens.len() < sd_config.clip.max_position_embeddings { tokens.push(pad_id) } let tokens = Tensor::new(tokens.as_slice(), device)?.unsqueeze(0)?; println!("Building the Clip transformer."); let clip_weights_file = if first { ModelFile::Clip } else { ModelFile::Clip2 }; let clip_weights = clip_weights_file.get(clip_weights, sd_version, false)?; let clip_config = if first { &sd_config.clip } else { sd_config.clip2.as_ref().unwrap() }; let text_model = stable_diffusion::build_clip_transformer(clip_config, clip_weights, device, DType::F32)?; let text_embeddings = text_model.forward(&tokens)?; let text_embeddings = if use_guide_scale { let mut uncond_tokens = tokenizer .encode(uncond_prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); if uncond_tokens.len() > sd_config.clip.max_position_embeddings { anyhow::bail!( "the negative prompt is too long, {} > max-tokens ({})", uncond_tokens.len(), sd_config.clip.max_position_embeddings ) } while uncond_tokens.len() < sd_config.clip.max_position_embeddings { uncond_tokens.push(pad_id) } let uncond_tokens = Tensor::new(uncond_tokens.as_slice(), device)?.unsqueeze(0)?; let uncond_embeddings = text_model.forward(&uncond_tokens)?; Tensor::cat(&[uncond_embeddings, text_embeddings], 0)?.to_dtype(dtype)? } else { text_embeddings.to_dtype(dtype)? }; Ok(text_embeddings) } fn image_preprocess>(path: T) -> anyhow::Result { let img = image::ImageReader::open(path)?.decode()?; let (height, width) = (img.height() as usize, img.width() as usize); let height = height - height % 32; let width = width - width % 32; let img = img.resize_to_fill( width as u32, height as u32, image::imageops::FilterType::CatmullRom, ); let img = img.to_rgb8(); let img = img.into_raw(); let img = Tensor::from_vec(img, (height, width, 3), &Device::Cpu)? .permute((2, 0, 1))? .to_dtype(DType::F32)? .affine(2. / 255., -1.)? .unsqueeze(0)?; Ok(img) } fn run(args: Args) -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let Args { prompt, uncond_prompt, cpu, height, width, n_steps, tokenizer, final_image, sliced_attention_size, num_samples, bsize, sd_version, clip_weights, vae_weights, unet_weights, tracing, use_f16, guidance_scale, use_flash_attn, img2img, img2img_strength, seed, .. } = args; if !(0. ..=1.).contains(&img2img_strength) { anyhow::bail!("img2img-strength should be between 0 and 1, got {img2img_strength}") } let _guard = if tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; let guidance_scale = match guidance_scale { Some(guidance_scale) => guidance_scale, None => match sd_version { StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 | StableDiffusionVersion::Xl => 7.5, StableDiffusionVersion::Turbo => 0., }, }; let n_steps = match n_steps { Some(n_steps) => n_steps, None => match sd_version { StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 | StableDiffusionVersion::Xl => 30, StableDiffusionVersion::Turbo => 1, }, }; let dtype = if use_f16 { DType::F16 } else { DType::F32 }; let sd_config = match sd_version { StableDiffusionVersion::V1_5 => { stable_diffusion::StableDiffusionConfig::v1_5(sliced_attention_size, height, width) } StableDiffusionVersion::V2_1 => { stable_diffusion::StableDiffusionConfig::v2_1(sliced_attention_size, height, width) } StableDiffusionVersion::Xl => { stable_diffusion::StableDiffusionConfig::sdxl(sliced_attention_size, height, width) } StableDiffusionVersion::Turbo => stable_diffusion::StableDiffusionConfig::sdxl_turbo( sliced_attention_size, height, width, ), }; let scheduler = sd_config.build_scheduler(n_steps)?; let device = candle_examples::device(cpu)?; if let Some(seed) = seed { device.set_seed(seed)?; } let use_guide_scale = guidance_scale > 1.0; let which = match sd_version { StableDiffusionVersion::Xl | StableDiffusionVersion::Turbo => vec![true, false], _ => vec![true], }; let text_embeddings = which .iter() .map(|first| { text_embeddings( &prompt, &uncond_prompt, tokenizer.clone(), clip_weights.clone(), sd_version, &sd_config, use_f16, &device, dtype, use_guide_scale, *first, ) }) .collect::>>()?; let text_embeddings = Tensor::cat(&text_embeddings, D::Minus1)?; let text_embeddings = text_embeddings.repeat((bsize, 1, 1))?; println!("{text_embeddings:?}"); println!("Building the autoencoder."); let vae_weights = ModelFile::Vae.get(vae_weights, sd_version, use_f16)?; let vae = sd_config.build_vae(vae_weights, &device, dtype)?; let init_latent_dist = match &img2img { None => None, Some(image) => { let image = image_preprocess(image)?.to_device(&device)?; Some(vae.encode(&image)?) } }; println!("Building the unet."); let unet_weights = ModelFile::Unet.get(unet_weights, sd_version, use_f16)?; let unet = sd_config.build_unet(unet_weights, &device, 4, use_flash_attn, dtype)?; let t_start = if img2img.is_some() { n_steps - (n_steps as f64 * img2img_strength) as usize } else { 0 }; let vae_scale = match sd_version { StableDiffusionVersion::V1_5 | StableDiffusionVersion::V2_1 | StableDiffusionVersion::Xl => 0.18215, StableDiffusionVersion::Turbo => 0.13025, }; for idx in 0..num_samples { let timesteps = scheduler.timesteps(); let latents = match &init_latent_dist { Some(init_latent_dist) => { let latents = (init_latent_dist.sample()? * vae_scale)?.to_device(&device)?; if t_start < timesteps.len() { let noise = latents.randn_like(0f64, 1f64)?; scheduler.add_noise(&latents, noise, timesteps[t_start])? } else { latents } } None => { let latents = Tensor::randn( 0f32, 1f32, (bsize, 4, sd_config.height / 8, sd_config.width / 8), &device, )?; // scale the initial noise by the standard deviation required by the scheduler (latents * scheduler.init_noise_sigma())? } }; let mut latents = latents.to_dtype(dtype)?; println!("starting sampling"); for (timestep_index, ×tep) in timesteps.iter().enumerate() { if timestep_index < t_start { continue; } let start_time = std::time::Instant::now(); let latent_model_input = if use_guide_scale { Tensor::cat(&[&latents, &latents], 0)? } else { latents.clone() }; let latent_model_input = scheduler.scale_model_input(latent_model_input, timestep)?; let noise_pred = unet.forward(&latent_model_input, timestep as f64, &text_embeddings)?; let noise_pred = if use_guide_scale { let noise_pred = noise_pred.chunk(2, 0)?; let (noise_pred_uncond, noise_pred_text) = (&noise_pred[0], &noise_pred[1]); (noise_pred_uncond + ((noise_pred_text - noise_pred_uncond)? * guidance_scale)?)? } else { noise_pred }; latents = scheduler.step(&noise_pred, timestep, &latents)?; let dt = start_time.elapsed().as_secs_f32(); println!("step {}/{n_steps} done, {:.2}s", timestep_index + 1, dt); if args.intermediary_images { save_image( &vae, &latents, vae_scale, bsize, idx, &final_image, num_samples, Some(timestep_index + 1), )?; } } println!( "Generating the final image for sample {}/{}.", idx + 1, num_samples ); save_image( &vae, &latents, vae_scale, bsize, idx, &final_image, num_samples, None, )?; } Ok(()) } fn main() -> Result<()> { let args = Args::parse(); run(args) }