#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::{Error as E, Result}; use clap::{Parser, ValueEnum}; use candle_transformers::models::quantized_stable_lm::Model as QStableLM; use candle_transformers::models::stable_lm::{Config, Model as StableLM}; use candle::{DType, Device, Tensor}; use candle_examples::token_output_stream::TokenOutputStream; use candle_nn::VarBuilder; use candle_transformers::generation::LogitsProcessor; use hf_hub::{api::sync::Api, Repo, RepoType}; use tokenizers::Tokenizer; enum Model { StableLM(StableLM), Quantized(QStableLM), } struct TextGeneration { model: Model, device: Device, tokenizer: TokenOutputStream, logits_processor: LogitsProcessor, repeat_penalty: f32, repeat_last_n: usize, } impl TextGeneration { #[allow(clippy::too_many_arguments)] fn new( model: Model, tokenizer: Tokenizer, seed: u64, temp: Option, top_p: Option, repeat_penalty: f32, repeat_last_n: usize, device: &Device, ) -> Self { let logits_processor = LogitsProcessor::new(seed, temp, top_p); Self { model, tokenizer: TokenOutputStream::new(tokenizer), logits_processor, repeat_penalty, repeat_last_n, device: device.clone(), } } fn run(&mut self, prompt: &str, sample_len: usize) -> Result<()> { use std::io::Write; self.tokenizer.clear(); let mut tokens = self .tokenizer .tokenizer() .encode(prompt, true) .map_err(E::msg)? .get_ids() .to_vec(); for &t in tokens.iter() { if let Some(t) = self.tokenizer.next_token(t)? { print!("{t}") } } std::io::stdout().flush()?; let mut generated_tokens = 0usize; let eos_token = match self.tokenizer.get_token("<|endoftext|>") { Some(token) => token, None => anyhow::bail!("cannot find the <|endoftext|> token"), }; let start_gen = std::time::Instant::now(); for index in 0..sample_len { let context_size = if index > 0 { 1 } else { tokens.len() }; let start_pos = tokens.len().saturating_sub(context_size); let ctxt = &tokens[start_pos..]; let input = Tensor::new(ctxt, &self.device)?.unsqueeze(0)?; let logits = match &mut self.model { Model::StableLM(m) => m.forward(&input, start_pos)?, Model::Quantized(m) => m.forward(&input, start_pos)?, }; let logits = logits.squeeze(0)?.squeeze(0)?.to_dtype(DType::F32)?; let logits = if self.repeat_penalty == 1. { logits } else { let start_at = tokens.len().saturating_sub(self.repeat_last_n); candle_transformers::utils::apply_repeat_penalty( &logits, self.repeat_penalty, &tokens[start_at..], )? }; let next_token = self.logits_processor.sample(&logits)?; tokens.push(next_token); generated_tokens += 1; if next_token == eos_token { break; } if let Some(t) = self.tokenizer.next_token(next_token)? { print!("{t}"); std::io::stdout().flush()?; } } let dt = start_gen.elapsed(); if let Some(rest) = self.tokenizer.decode_rest().map_err(E::msg)? { print!("{rest}"); } std::io::stdout().flush()?; println!( "\n{generated_tokens} tokens generated ({:.2} token/s)", generated_tokens as f64 / dt.as_secs_f64(), ); Ok(()) } } #[derive(Clone, Copy, Debug, ValueEnum, PartialEq, Eq)] enum Which { V1Orig, V1, V1Zephyr, V2, V2Zephyr, Code, } #[derive(Parser, Debug)] #[command(author, version, about, long_about = None)] struct Args { /// Run on CPU rather than on GPU. #[arg(long)] cpu: bool, /// Enable tracing (generates a trace-timestamp.json file). #[arg(long)] tracing: bool, #[arg(long)] use_flash_attn: bool, #[arg(long)] prompt: String, /// The temperature used to generate samples. #[arg(long)] temperature: Option, /// Nucleus sampling probability cutoff. #[arg(long)] top_p: Option, /// The seed to use when generating random samples. #[arg(long, default_value_t = 299792458)] seed: u64, /// The length of the sample to generate (in tokens). #[arg(long, short = 'n', default_value_t = 1000)] sample_len: usize, #[arg(long)] model_id: Option, #[arg(long, default_value = "main")] revision: String, #[arg(long, default_value = "v2")] which: Which, #[arg(long)] tokenizer_file: Option, #[arg(long)] weight_files: Option, #[arg(long)] quantized: bool, /// Penalty to be applied for repeating tokens, 1. means no penalty. #[arg(long, default_value_t = 1.1)] repeat_penalty: f32, /// The context size to consider for the repeat penalty. #[arg(long, default_value_t = 64)] repeat_last_n: usize, } fn main() -> Result<()> { use tracing_chrome::ChromeLayerBuilder; use tracing_subscriber::prelude::*; let args = Args::parse(); let _guard = if args.tracing { let (chrome_layer, guard) = ChromeLayerBuilder::new().build(); tracing_subscriber::registry().with(chrome_layer).init(); Some(guard) } else { None }; println!( "avx: {}, neon: {}, simd128: {}, f16c: {}", candle::utils::with_avx(), candle::utils::with_neon(), candle::utils::with_simd128(), candle::utils::with_f16c() ); println!( "temp: {:.2} repeat-penalty: {:.2} repeat-last-n: {}", args.temperature.unwrap_or(0.), args.repeat_penalty, args.repeat_last_n ); let start = std::time::Instant::now(); let api = Api::new()?; let model_id = match args.model_id { Some(model_id) => model_id, None => match args.which { Which::V1Orig => "lmz/candle-stablelm-3b-4e1t".to_string(), Which::V1 => "stabilityai/stablelm-3b-4e1t".to_string(), Which::V1Zephyr => "stabilityai/stablelm-zephyr-3b".to_string(), Which::Code => "stabilityai/stable-code-3b".to_string(), Which::V2 => "stabilityai/stablelm-2-1_6b".to_string(), Which::V2Zephyr => "stabilityai/stablelm-2-zephyr-1_6b".to_string(), }, }; let repo = api.repo(Repo::with_revision( model_id, RepoType::Model, args.revision, )); let tokenizer_filename = match args.tokenizer_file { Some(file) => std::path::PathBuf::from(file), None => repo.get("tokenizer.json")?, }; let filenames = match args.weight_files { Some(files) => files .split(',') .map(std::path::PathBuf::from) .collect::>(), None => match (args.which, args.quantized) { (Which::V1Orig | Which::V1, true) => vec![repo.get("model-q4k.gguf")?], (Which::V2, true) => { let gguf = api .model("lmz/candle-stablelm".to_string()) .get("stablelm-2-1_6b-q4k.gguf")?; vec![gguf] } (Which::V2Zephyr, true) => { let gguf = api .model("lmz/candle-stablelm".to_string()) .get("stablelm-2-zephyr-1_6b-q4k.gguf")?; vec![gguf] } (Which::V1Zephyr | Which::Code, true) => { anyhow::bail!("Quantized {:?} variant not supported.", args.which) } (Which::V1Orig | Which::V1 | Which::V1Zephyr | Which::V2 | Which::V2Zephyr, false) => { vec![repo.get("model.safetensors")?] } (Which::Code, false) => { candle_examples::hub_load_safetensors(&repo, "model.safetensors.index.json")? } }, }; println!("retrieved the files in {:?}", start.elapsed()); let tokenizer = Tokenizer::from_file(tokenizer_filename).map_err(E::msg)?; let start = std::time::Instant::now(); let config = match args.which { Which::V1Orig => Config::stablelm_3b_4e1t(args.use_flash_attn), Which::V1 | Which::V1Zephyr | Which::V2 | Which::V2Zephyr | Which::Code => { let config_filename = repo.get("config.json")?; let config = std::fs::read_to_string(config_filename)?; let mut config: Config = serde_json::from_str(&config)?; config.set_use_flash_attn(args.use_flash_attn); config } }; let device = candle_examples::device(args.cpu)?; let model = if args.quantized { let filename = &filenames[0]; let vb = candle_transformers::quantized_var_builder::VarBuilder::from_gguf(filename, &device)?; let model = QStableLM::new(&config, vb)?; Model::Quantized(model) } else { let dtype = if device.is_cuda() { DType::BF16 } else { DType::F32 }; let vb = unsafe { VarBuilder::from_mmaped_safetensors(&filenames, dtype, &device)? }; let model = StableLM::new(&config, vb)?; Model::StableLM(model) }; println!("loaded the model in {:?}", start.elapsed()); let mut pipeline = TextGeneration::new( model, tokenizer, args.seed, args.temperature, args.top_p, args.repeat_penalty, args.repeat_last_n, &device, ); pipeline.run(&args.prompt, args.sample_len)?; Ok(()) }