# candle-t5 ## Encoder-decoder example: ```bash $ cargo run --example t5 --release -- --model-id "t5-small" --prompt "translate to German: A beautiful candle." --decode ... Eine schöne Kerze. 9 tokens generated (2.42 token/s) ``` Variants such as [flan-t5](https://huggingface.co/google/flan-t5-small), [flan-ul2](https://huggingface.co/google/flan-ul2) (with `--revision "refs/pr/25"`), and [Co-EdIT](https://huggingface.co/grammarly/coedit-large) are also supported. ## Translation with [MADLAD-400](https://arxiv.org/abs/2309.04662) MADLAD-400 is a series of multilingual machine translation T5 models trained on 250 billion tokens covering over 450 languages using publicly available data. These models are competitive with significantly larger models. ```bash cargo run --example t5 --release -- \ --model-id "jbochi/madlad400-3b-mt" \ --prompt "<2de> How are you, my friend?" \ --decode --temperature 0 ... Wie geht es dir, mein Freund? ``` ## Sentence embedding example ```bash $ cargo run --example t5 --release -- --model-id "t5-small" --prompt "A beautiful candle." ... [[[ 0.0515, -0.0541, -0.0761, ..., -0.0392, 0.1511, -0.0265], [-0.0974, 0.0998, -0.1659, ..., -0.2450, 0.1738, -0.0164], [ 0.0624, -0.1024, 0.0430, ..., -0.1388, 0.0564, -0.2962], [-0.0389, -0.1173, 0.0026, ..., 0.1064, -0.1065, 0.0990], [ 0.1300, 0.0027, -0.0326, ..., 0.0026, -0.0317, 0.0851]]] Tensor[[1, 5, 512], f32] Took 303.766583ms ```