// Build script to run nvcc and generate the C glue code for launching the flash-attention kernel. // The cuda build time is very long so one can set the CANDLE_FLASH_ATTN_BUILD_DIR environment // variable in order to cache the compiled artifacts and avoid recompiling too often. use anyhow::{Context, Result}; use rayon::prelude::*; use std::path::PathBuf; use std::str::FromStr; const KERNEL_FILES: [&str; 17] = [ "flash_api.cu", "flash_fwd_hdim128_fp16_sm80.cu", "flash_fwd_hdim160_fp16_sm80.cu", "flash_fwd_hdim192_fp16_sm80.cu", "flash_fwd_hdim224_fp16_sm80.cu", "flash_fwd_hdim256_fp16_sm80.cu", "flash_fwd_hdim32_fp16_sm80.cu", "flash_fwd_hdim64_fp16_sm80.cu", "flash_fwd_hdim96_fp16_sm80.cu", "flash_fwd_hdim128_bf16_sm80.cu", "flash_fwd_hdim160_bf16_sm80.cu", "flash_fwd_hdim192_bf16_sm80.cu", "flash_fwd_hdim224_bf16_sm80.cu", "flash_fwd_hdim256_bf16_sm80.cu", "flash_fwd_hdim32_bf16_sm80.cu", "flash_fwd_hdim64_bf16_sm80.cu", "flash_fwd_hdim96_bf16_sm80.cu", ]; fn main() -> Result<()> { let num_cpus = std::env::var("RAYON_NUM_THREADS").map_or_else( |_| num_cpus::get_physical(), |s| usize::from_str(&s).unwrap(), ); rayon::ThreadPoolBuilder::new() .num_threads(num_cpus) .build_global() .unwrap(); println!("cargo:rerun-if-changed=build.rs"); for kernel_file in KERNEL_FILES.iter() { println!("cargo:rerun-if-changed=kernels/{kernel_file}"); } println!("cargo:rerun-if-changed=kernels/flash_fwd_kernel.h"); println!("cargo:rerun-if-changed=kernels/flash_fwd_launch_template.h"); println!("cargo:rerun-if-changed=kernels/flash.h"); println!("cargo:rerun-if-changed=kernels/philox.cuh"); println!("cargo:rerun-if-changed=kernels/softmax.h"); println!("cargo:rerun-if-changed=kernels/utils.h"); println!("cargo:rerun-if-changed=kernels/kernel_traits.h"); println!("cargo:rerun-if-changed=kernels/block_info.h"); println!("cargo:rerun-if-changed=kernels/static_switch.h"); let out_dir = PathBuf::from(std::env::var("OUT_DIR").context("OUT_DIR not set")?); let build_dir = match std::env::var("CANDLE_FLASH_ATTN_BUILD_DIR") { Err(_) => { #[allow(clippy::redundant_clone)] out_dir.clone() } Ok(build_dir) => PathBuf::from(build_dir), }; set_cuda_include_dir()?; let compute_cap = compute_cap()?; let out_file = build_dir.join("libflashattention.a"); let kernel_dir = PathBuf::from("kernels"); let cu_files: Vec<_> = KERNEL_FILES .iter() .map(|f| { let mut obj_file = out_dir.join(f); obj_file.set_extension("o"); (kernel_dir.join(f), obj_file) }) .collect(); let should_compile = if out_file.exists() { cu_files.iter().any(|(cu_file, _)| { let out_modified = out_file.metadata().unwrap().modified().unwrap(); let in_modified = cu_file.metadata().unwrap().modified().unwrap(); in_modified.duration_since(out_modified).is_ok() }) } else { true }; if should_compile { cu_files .par_iter() .map(|(cu_file, obj_file)| { let mut command = std::process::Command::new("nvcc"); command .arg("-std=c++17") .arg(format!("--gpu-architecture=sm_{compute_cap}")) .arg("-c") .args(["-o", obj_file.to_str().unwrap()]) .args(["--default-stream", "per-thread"]) .arg("-Icutlass/include") .arg("--expt-relaxed-constexpr") .arg(cu_file); let output = command .spawn() .context("failed spawning nvcc")? .wait_with_output()?; if !output.status.success() { anyhow::bail!( "nvcc error while compiling:\n\n# stdout\n{:#}\n\n# stderr\n{:#}", String::from_utf8_lossy(&output.stdout), String::from_utf8_lossy(&output.stderr) ) } Ok(()) }) .collect::>()?; let obj_files = cu_files.iter().map(|c| c.1.clone()).collect::>(); let mut command = std::process::Command::new("nvcc"); command .arg("--lib") .args(["-o", out_file.to_str().unwrap()]) .args(obj_files); let output = command .spawn() .context("failed spawning nvcc")? .wait_with_output()?; if !output.status.success() { anyhow::bail!( "nvcc error while linking:\n\n# stdout\n{:#}\n\n# stderr\n{:#}", String::from_utf8_lossy(&output.stdout), String::from_utf8_lossy(&output.stderr) ) } } println!("cargo:rustc-link-search={}", build_dir.display()); println!("cargo:rustc-link-lib=flashattention"); println!("cargo:rustc-link-lib=dylib=cudart"); println!("cargo:rustc-link-lib=dylib=stdc++"); /* laurent: I tried using the cc cuda integration as below but this lead to ptaxs never finishing to run for some reason. Calling nvcc manually worked fine. cc::Build::new() .cuda(true) .include("cutlass/include") .flag("--expt-relaxed-constexpr") .flag("--default-stream") .flag("per-thread") .flag(&format!("--gpu-architecture=sm_{compute_cap}")) .file("kernels/flash_fwd_hdim32_fp16_sm80.cu") .compile("flashattn"); */ Ok(()) } fn set_cuda_include_dir() -> Result<()> { // NOTE: copied from cudarc build.rs. let env_vars = [ "CUDA_PATH", "CUDA_ROOT", "CUDA_TOOLKIT_ROOT_DIR", "CUDNN_LIB", ]; let env_vars = env_vars .into_iter() .map(std::env::var) .filter_map(Result::ok) .map(Into::::into); let roots = [ "/usr", "/usr/local/cuda", "/opt/cuda", "/usr/lib/cuda", "C:/Program Files/NVIDIA GPU Computing Toolkit", "C:/CUDA", ]; let roots = roots.into_iter().map(Into::::into); let root = env_vars .chain(roots) .find(|path| path.join("include").join("cuda.h").is_file()) .context("cannot find include/cuda.h")?; println!( "cargo:rustc-env=CUDA_INCLUDE_DIR={}", root.join("include").display() ); Ok(()) } #[allow(unused)] fn compute_cap() -> Result { // Grab compute code from nvidia-smi let mut compute_cap = { let out = std::process::Command::new("nvidia-smi") .arg("--query-gpu=compute_cap") .arg("--format=csv") .output() .context("`nvidia-smi` failed. Ensure that you have CUDA installed and that `nvidia-smi` is in your PATH.")?; let out = std::str::from_utf8(&out.stdout).context("stdout is not a utf8 string")?; let mut lines = out.lines(); assert_eq!( lines.next().context("missing line in stdout")?, "compute_cap" ); let cap = lines .next() .context("missing line in stdout")? .replace('.', ""); cap.parse::() .with_context(|| format!("cannot parse as int {cap}"))? }; // Grab available GPU codes from nvcc and select the highest one let max_nvcc_code = { let out = std::process::Command::new("nvcc") .arg("--list-gpu-code") .output() .expect("`nvcc` failed. Ensure that you have CUDA installed and that `nvcc` is in your PATH."); let out = std::str::from_utf8(&out.stdout).unwrap(); let out = out.lines().collect::>(); let mut codes = Vec::with_capacity(out.len()); for code in out { let code = code.split('_').collect::>(); if !code.is_empty() && code.contains(&"sm") { if let Ok(num) = code[1].parse::() { codes.push(num); } } } codes.sort(); if !codes.contains(&compute_cap) { anyhow::bail!( "nvcc cannot target gpu arch {compute_cap}. Available nvcc targets are {codes:?}." ); } *codes.last().unwrap() }; // If nvidia-smi compute_cap is higher than the highest gpu code from nvcc, // then choose the highest gpu code in nvcc if compute_cap > max_nvcc_code { println!( "cargo:warning=Lowering gpu arch {compute_cap} to max nvcc target {max_nvcc_code}." ); compute_cap = max_nvcc_code; } println!("cargo:rerun-if-env-changed=CUDA_COMPUTE_CAP"); if let Ok(compute_cap_str) = std::env::var("CUDA_COMPUTE_CAP") { compute_cap = compute_cap_str .parse::() .with_context(|| format!("cannot parse as usize '{compute_cap_str}'"))?; println!("cargo:warning=Using gpu arch {compute_cap} from $CUDA_COMPUTE_CAP"); } println!("cargo:rustc-env=CUDA_COMPUTE_CAP=sm_{compute_cap}"); Ok(compute_cap) }