#include "cuda_utils.cuh" #include // Naive implementation of conv1d. template __device__ void conv1d( const size_t src_numel, const size_t l_out, const size_t stride, const size_t padding, const size_t dilation, const size_t *info, const T *src, const T *kernel, T *dst ) { // src: (b_size, c_in, l_in) // k: (c_out, c_in, k_size) const size_t *src_dims = info; const size_t *src_s = info + 3; const size_t *k_dims = info + 6; const size_t *k_s = info + 9; const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; const size_t k_size = k_dims[2]; const size_t c_out = k_dims[0]; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; if (dst_i >= src_dims[0] * c_out * l_out) { return; } // TODO const size_t b_idx = dst_i / (l_out * c_out); const size_t dst_c_idx = (dst_i / l_out) % c_out; const size_t dst_l = dst_i % l_out; const size_t src_idx0 = b_idx * src_s[0]; A d = 0; for (size_t offset = 0; offset < k_size; ++offset) { size_t src_l = (stride * dst_l + offset) * dilation; if (src_l < padding || src_l >= padding + l_in) { continue; } src_l -= padding; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + src_l * src_s[2]; const size_t k_idx = dst_c_idx * k_s[0] + src_c_idx * k_s[1] + offset * k_s[2]; d += static_cast(src[src_idx]) * static_cast(kernel[k_idx]); } } dst[dst_i] = static_cast(d); } template __device__ void im2col1d( const size_t dst_numel, const size_t l_out, const size_t l_k, const size_t stride, const size_t padding, const size_t dilation, const size_t *info, const T *src, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // dst: (b_size, l_out, c_in, l_k) // src: (b_size, c_in, l_in) if (dst_i >= dst_numel) { return; } const size_t *src_dims = info; const size_t *src_s = info + 3; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; const size_t dst_s2 = l_k; const size_t dst_s1 = c_in * dst_s2; const size_t dst_s0 = l_out * dst_s1; size_t tmp_dst_i = dst_i; const size_t b_idx = tmp_dst_i / dst_s0; tmp_dst_i -= b_idx * dst_s0; const size_t l_idx = tmp_dst_i / dst_s1; tmp_dst_i -= l_idx * dst_s1; const size_t c_idx = tmp_dst_i / dst_s2; tmp_dst_i -= c_idx * dst_s2; const size_t l_k_idx = tmp_dst_i; size_t src_l_idx = l_idx * stride + l_k_idx * dilation; if (src_l_idx < padding || src_l_idx >= l_in + padding) { dst[dst_i] = static_cast(0); } else { src_l_idx -= padding; const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_l_idx * src_s[2]; dst[dst_i] = src[src_i]; } } template __device__ void im2col( const size_t dst_numel, const size_t h_out, const size_t w_out, const size_t h_k, const size_t w_k, const size_t stride, const size_t padding, const size_t dilation, const size_t *info, const T *src, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // dst: (b_size, h_out, w_out, c_in, h_k, w_k) // src: (b_size, c_in, h_in, w_in) if (dst_i >= dst_numel) { return; } const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t c_in = src_dims[1]; const size_t h_in = src_dims[2]; const size_t w_in = src_dims[3]; const size_t dst_s4 = w_k; const size_t dst_s3 = h_k * dst_s4; const size_t dst_s2 = c_in * dst_s3; const size_t dst_s1 = w_out * dst_s2; const size_t dst_s0 = h_out * dst_s1; size_t tmp_dst_i = dst_i; const size_t b_idx = tmp_dst_i / dst_s0; tmp_dst_i -= b_idx * dst_s0; const size_t h_idx = tmp_dst_i / dst_s1; tmp_dst_i -= h_idx * dst_s1; const size_t w_idx = tmp_dst_i / dst_s2; tmp_dst_i -= w_idx * dst_s2; const size_t c_idx = tmp_dst_i / dst_s3; tmp_dst_i -= c_idx * dst_s3; const size_t h_k_idx = tmp_dst_i / dst_s4; tmp_dst_i -= h_k_idx * dst_s4; const size_t w_k_idx = tmp_dst_i; size_t src_h_idx = h_idx * stride + h_k_idx * dilation; size_t src_w_idx = w_idx * stride + w_k_idx * dilation; if (src_h_idx < padding || src_h_idx >= h_in + padding) { dst[dst_i] = static_cast(0); } else if (src_w_idx < padding || src_w_idx >= w_in + padding) { dst[dst_i] = static_cast(0); } else { src_h_idx -= padding; src_w_idx -= padding; const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_h_idx * src_s[2] + src_w_idx * src_s[3]; dst[dst_i] = src[src_i]; } } // Naive implementation of conv2d. template __device__ void conv2d( const size_t src_numel, const size_t w_out, const size_t h_out, const size_t stride, const size_t padding, const size_t dilation, const size_t *info, const T *src, const T *kernel, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, h_in, w_in) // k: (c_out, c_in, h_k, w_k) const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t *k_dims = info + 8; const size_t *k_s = info + 12; const size_t h_k = k_dims[2]; const size_t w_k = k_dims[3]; const size_t c_out = k_dims[0]; const size_t c_in = src_dims[1]; const size_t h_in = src_dims[2]; const size_t w_in = src_dims[3]; if (dst_i >= src_dims[0] * c_out * w_out * h_out) { return; } // TODO const size_t b_idx = dst_i / (w_out * h_out * c_out); const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out; // NCHW layout. const size_t dst_h = (dst_i / w_out) % h_out; const size_t dst_w = dst_i % w_out; const size_t src_idx0 = b_idx * src_s[0]; A d = 0; for (size_t w_offset = 0; w_offset < w_k; ++w_offset) { size_t src_w = stride * dst_w + w_offset * dilation; if (src_w < padding || src_w >= w_in + padding) { continue; } src_w -= padding; for (size_t h_offset = 0; h_offset < h_k; ++h_offset) { size_t src_h = stride * dst_h + h_offset * dilation; if (src_h < padding || src_h >= h_in + padding) { continue; } src_h -= padding; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + src_h * src_s[2] + src_w * src_s[3]; const size_t k_idx = dst_c_idx * k_s[0] + src_c_idx * k_s[1] + h_offset * k_s[2] + w_offset * k_s[3]; d += static_cast(src[src_idx]) * static_cast(kernel[k_idx]); } } } dst[dst_i] = static_cast(d); } // Naive implementation of conv_transpose1d. template __device__ void conv_transpose1d( const size_t src_numel, const size_t l_out, const size_t stride, const size_t padding, const size_t out_padding, const size_t dilation, const size_t *info, const T *src, const T *kernel, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, l_in) // k: (c_in, c_out, l_k) const size_t *src_dims = info; const size_t *src_s = info + 3; const size_t *k_dims = info + 6; const size_t *k_s = info + 9; const size_t l_k = k_dims[2]; const size_t c_out = k_dims[1]; const size_t c_in = src_dims[1]; const size_t l_in = src_dims[2]; if (dst_i >= src_dims[0] * c_out * l_out) { return; } // TODO const size_t b_idx = dst_i / (l_out * c_out); const size_t dst_c_idx = (dst_i / l_out) % c_out; // NCL layout. const size_t out_x = dst_i % l_out; const size_t src_idx0 = b_idx * src_s[0]; A d = 0; for (int k_x = 0; k_x < (int)l_k; ++k_x) { // let out_x = inp_x * p.stride + k_x * p.dilation - p.padding; int inp_x_stride = (int)(out_x + padding) - k_x * dilation; if (inp_x_stride < 0 || inp_x_stride % stride) { continue; } int inp_x = inp_x_stride / stride; if (inp_x >= l_in) continue; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_x * src_s[2]; const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_x * k_s[2]; d += static_cast(src[src_idx]) * static_cast(kernel[k_idx]); } } dst[dst_i] = static_cast(d); } // Naive implementation of conv_transpose2d. template __device__ void conv_transpose2d( const size_t src_numel, const size_t w_out, const size_t h_out, const size_t stride, const size_t padding, const size_t out_padding, const size_t dilation, const size_t *info, const T *src, const T *kernel, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, h_in, w_in) // k: (c_in, c_out, h_k, w_k) const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t *k_dims = info + 8; const size_t *k_s = info + 12; const size_t h_k = k_dims[2]; const size_t w_k = k_dims[3]; const size_t c_out = k_dims[1]; const size_t c_in = src_dims[1]; const size_t h_in = src_dims[2]; const size_t w_in = src_dims[3]; if (dst_i >= src_dims[0] * c_out * w_out * h_out) { return; } // TODO const size_t b_idx = dst_i / (w_out * h_out * c_out); const size_t dst_c_idx = (dst_i / (w_out * h_out)) % c_out; // NCHW layout. const size_t out_y = (dst_i / w_out) % h_out; const size_t out_x = dst_i % w_out; const size_t src_idx0 = b_idx * src_s[0]; A d = 0; for (int k_x = 0; k_x < (int)w_k; ++k_x) { // let out_x = inp_x * p.stride + k_x * p.dilation - p.padding; int inp_x_stride = (int)(out_x + padding) - k_x * dilation; if (inp_x_stride < 0 || inp_x_stride % stride) { continue; } int inp_x = inp_x_stride / stride; if (inp_x >= w_in) continue; for (int k_y = 0; k_y < (int)h_k; ++k_y) { int inp_y_stride = (int)(out_y + padding) - k_y * dilation; if (inp_y_stride < 0 || inp_y_stride % stride) { continue; } int inp_y = inp_y_stride / stride; if (inp_y >= h_in) continue; for (size_t src_c_idx = 0; src_c_idx < c_in; ++src_c_idx) { const size_t src_idx = src_idx0 + src_c_idx * src_s[1] + inp_y * src_s[2] + inp_x * src_s[3]; const size_t k_idx = src_c_idx * k_s[0] + dst_c_idx * k_s[1] + k_y * k_s[2] + k_x * k_s[3]; d += static_cast(src[src_idx]) * static_cast(kernel[k_idx]); } } } dst[dst_i] = static_cast(d); } template __device__ void avg_pool2d( const size_t src_numel, const size_t w_k, const size_t h_k, const size_t w_stride, const size_t h_stride, const size_t *info, const T *src, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, w_in, h_in) const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; const size_t w_out = (w_in - w_k) / w_stride + 1; const size_t h_out = (h_in - h_k) / h_stride + 1; if (dst_i >= src_dims[0] * c * w_out * h_out) { return; } // TODO: Improve this. const size_t b_idx = dst_i / (w_out * h_out * c); const size_t c_idx = (dst_i / (w_out * h_out)) % c; const size_t dst_w = (dst_i / h_out) % w_out; const size_t dst_h = dst_i % h_out; const size_t src_idx0 = b_idx * src_s[0]; const float scale = 1.0 / (w_k * h_k); A d = 0; for (size_t w_offset = 0; w_offset < w_k; ++w_offset) { size_t src_w = w_stride * dst_w + w_offset; if (src_w >= w_in) { continue; } for (size_t h_offset = 0; h_offset < h_k; ++h_offset) { size_t src_h = h_stride * dst_h + h_offset; if (src_h >= h_in) { continue; } const size_t src_idx = src_idx0 + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3]; d += static_cast(src[src_idx]); } } dst[dst_i] = static_cast(d * scale); } template __device__ void max_pool2d( const size_t src_numel, const size_t w_k, const size_t h_k, const size_t w_stride, const size_t h_stride, const size_t *info, const T *src, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, w_in, h_in) const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; const size_t w_out = (w_in - w_k) / w_stride + 1; const size_t h_out = (h_in - h_k) / h_stride + 1; if (dst_i >= src_dims[0] * c * w_out * h_out) { return; } // TODO: Improve this. const size_t b_idx = dst_i / (w_out * h_out * c); const size_t c_idx = (dst_i / (w_out * h_out)) % c; const size_t dst_w = (dst_i / h_out) % w_out; const size_t dst_h = dst_i % h_out; const size_t src_idx0 = b_idx * src_s[0]; T d = 0; bool set = false; for (size_t w_offset = 0; w_offset < w_k; ++w_offset) { size_t src_w = w_stride * dst_w + w_offset; if (src_w >= w_in) { continue; } for (size_t h_offset = 0; h_offset < h_k; ++h_offset) { size_t src_h = h_stride * dst_h + h_offset; if (src_h >= h_in) { continue; } const size_t src_idx = src_idx0 + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3]; if (set) { d = maxg(d, src[src_idx]); } else { d = src[src_idx]; set = true; } } } dst[dst_i] = d; } template __device__ void upsample_nearest2d( const size_t w_out, const size_t h_out, const double w_scale, const double h_scale, const size_t *info, const T *src, T *dst ) { const size_t dst_i = blockIdx.x * blockDim.x + threadIdx.x; // src: (b_size, c_in, w_in, h_in) const size_t *src_dims = info; const size_t *src_s = info + 4; const size_t c = src_dims[1]; const size_t w_in = src_dims[2]; const size_t h_in = src_dims[3]; if (dst_i >= src_dims[0] * c * w_out * h_out) { return; } // TODO: Improve this. const size_t b_idx = dst_i / (w_out * h_out * c); const size_t c_idx = (dst_i / (w_out * h_out)) % c; const size_t dst_w = (dst_i / h_out) % w_out; const size_t dst_h = dst_i % h_out; size_t src_w = static_cast(dst_w * w_scale); size_t src_h = static_cast(dst_h * h_scale); if (src_w >= w_in) { src_w = w_in - 1; } if (src_h >= h_in) { src_h = h_in - 1; } const size_t src_i = b_idx * src_s[0] + c_idx * src_s[1] + src_w * src_s[2] + src_h * src_s[3]; dst[dst_i] = src[src_i]; } #define CONV1D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t num_dims, \ const size_t stride, \ const size_t padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ const TYPENAME *kernel, \ TYPENAME *dst \ ) { \ conv1d(src_numel, num_dims, stride, padding, dilation, info, src, kernel, dst); \ } \ #define CONV2D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t w_out, \ const size_t h_out, \ const size_t stride, \ const size_t padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ const TYPENAME *kernel, \ TYPENAME *dst \ ) { \ conv2d(src_numel, w_out, h_out, stride, padding, dilation, info, src, kernel, dst); \ } \ #define IM2COL1D_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t dst_numel, \ const size_t l_out, \ const size_t l_k, \ const size_t stride, \ const size_t padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ TYPENAME *dst \ ) { \ im2col1d(dst_numel, l_out, l_k, stride, padding, dilation, info, src, dst); \ } \ #define IM2COL_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t dst_numel, \ const size_t h_out, \ const size_t w_out, \ const size_t h_k, \ const size_t w_k, \ const size_t stride, \ const size_t padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ TYPENAME *dst \ ) { \ im2col(dst_numel, h_out, w_out, h_k, w_k, stride, padding, dilation, info, src, dst); \ } \ #define CONVT1D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t l_out, \ const size_t stride, \ const size_t padding, \ const size_t out_padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ const TYPENAME *kernel, \ TYPENAME *dst \ ) { \ conv_transpose1d(src_numel, l_out, stride, padding, out_padding, dilation, info, src, kernel, dst); \ } \ #define CONVT2D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t w_out, \ const size_t h_out, \ const size_t stride, \ const size_t padding, \ const size_t out_padding, \ const size_t dilation, \ const size_t *info, \ const TYPENAME *src, \ const TYPENAME *kernel, \ TYPENAME *dst \ ) { \ conv_transpose2d(src_numel, w_out, h_out, stride, padding, out_padding, dilation, info, src, kernel, dst); \ } \ #define AVG_POOL2D_OP(TYPENAME, TYPEACC, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t w_k, \ const size_t h_k, \ const size_t w_stride, \ const size_t h_stride, \ const size_t *info, \ const TYPENAME *src, \ TYPENAME *dst \ ) { \ avg_pool2d(src_numel, w_k, h_k, w_stride, h_stride, info, src, dst); \ } \ #define MAX_POOL2D_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t src_numel, \ const size_t w_k, \ const size_t h_k, \ const size_t w_stride, \ const size_t h_stride, \ const size_t *info, \ const TYPENAME *src, \ TYPENAME *dst \ ) { \ max_pool2d(src_numel, w_k, h_k, w_stride, h_stride, info, src, dst); \ } \ #define UPSAMPLE_NEAREST2D_OP(TYPENAME, FN_NAME) \ extern "C" __global__ void FN_NAME( \ const size_t w_out, \ const size_t h_out, \ const double w_scale, \ const double h_scale, \ const size_t *info, \ const TYPENAME *src, \ TYPENAME *dst \ ) { \ upsample_nearest2d(w_out, h_out, w_scale, h_scale, info, src, dst); \ } \ #if __CUDA_ARCH__ >= 800 CONV1D_OP(__nv_bfloat16, float, conv1d_bf16) CONV2D_OP(__nv_bfloat16, float, conv2d_bf16) CONVT1D_OP(__nv_bfloat16, float, conv_transpose1d_bf16) CONVT2D_OP(__nv_bfloat16, float, conv_transpose2d_bf16) AVG_POOL2D_OP(__nv_bfloat16, float, avg_pool2d_bf16) MAX_POOL2D_OP(__nv_bfloat16, max_pool2d_bf16) UPSAMPLE_NEAREST2D_OP(__nv_bfloat16, upsample_nearest2d_bf16) IM2COL_OP(__nv_bfloat16, im2col_bf16) IM2COL1D_OP(__nv_bfloat16, im2col1d_bf16) #endif #if __CUDA_ARCH__ >= 530 CONV1D_OP(__half, float, conv1d_f16) CONV2D_OP(__half, float, conv2d_f16) CONVT1D_OP(__half, float, conv_transpose1d_f16) CONVT2D_OP(__half, float, conv_transpose2d_f16) AVG_POOL2D_OP(__half, float, avg_pool2d_f16) MAX_POOL2D_OP(__half, max_pool2d_f16) UPSAMPLE_NEAREST2D_OP(__half, upsample_nearest2d_f16) IM2COL_OP(__half, im2col_f16) IM2COL1D_OP(__half, im2col1d_f16) #endif CONV1D_OP(float, float, conv1d_f32) CONV1D_OP(double, double, conv1d_f64) CONV1D_OP(uint8_t, uint8_t, conv1d_u8) CONV1D_OP(uint32_t, uint32_t, conv1d_u32) CONV2D_OP(float, float, conv2d_f32) CONV2D_OP(double, double, conv2d_f64) CONV2D_OP(uint8_t, uint8_t, conv2d_u8) CONV2D_OP(uint32_t, uint32_t, conv2d_u32) CONVT1D_OP(float, float, conv_transpose1d_f32) CONVT1D_OP(double, double, conv_transpose1d_f64) CONVT1D_OP(uint8_t, uint8_t, conv_transpose1d_u8) CONVT1D_OP(uint32_t, uint32_t, conv_transpose1d_u32) CONVT2D_OP(float, float, conv_transpose2d_f32) CONVT2D_OP(double, double, conv_transpose2d_f64) CONVT2D_OP(uint8_t, uint8_t, conv_transpose2d_u8) CONVT2D_OP(uint32_t, uint32_t, conv_transpose2d_u32) AVG_POOL2D_OP(float, float, avg_pool2d_f32) AVG_POOL2D_OP(double, double, avg_pool2d_f64) AVG_POOL2D_OP(uint8_t, uint8_t, avg_pool2d_u8) AVG_POOL2D_OP(uint32_t, uint32_t, avg_pool2d_u32) MAX_POOL2D_OP(float, max_pool2d_f32) MAX_POOL2D_OP(double, max_pool2d_f64) MAX_POOL2D_OP(uint8_t, max_pool2d_u8) MAX_POOL2D_OP(uint32_t, max_pool2d_u32) UPSAMPLE_NEAREST2D_OP(float, upsample_nearest2d_f32) UPSAMPLE_NEAREST2D_OP(double, upsample_nearest2d_f64) UPSAMPLE_NEAREST2D_OP(uint8_t, upsample_nearest2d_u8) UPSAMPLE_NEAREST2D_OP(uint32_t, upsample_nearest2d_u32) IM2COL_OP(float, im2col_f32) IM2COL_OP(double, im2col_f64) IM2COL_OP(uint8_t, im2col_u8) IM2COL_OP(uint32_t, im2col_u32) IM2COL1D_OP(float, im2col1d_f32) IM2COL1D_OP(double, im2col1d_f64) IM2COL1D_OP(uint8_t, im2col1d_u8) IM2COL1D_OP(uint32_t, im2col1d_u32)