use candle::{Result, Tensor}; use serde::Deserialize; #[derive(Debug, Clone, Copy, PartialEq, Deserialize, Default)] #[serde(rename_all = "lowercase")] pub enum Activation { #[default] #[serde(alias = "gelu")] Gelu, #[serde(alias = "gelu_new")] NewGelu, Relu, Relu2, Relu6, Silu, Sigmoid, HardSigmoid, Swiglu, Swish, HardSwish, Elu(f64), LeakyRelu(f64), #[serde(alias = "gelu_pytorch_tanh")] GeluPytorchTanh, } impl super::Module for Activation { fn forward(&self, xs: &Tensor) -> Result { match self { Self::Gelu => xs.gelu_erf(), // https://github.com/huggingface/transformers/blob/12f043eaeaabfef6f6efea411d98e6f6d3c094b7/src/transformers/activations.py#L49-L78 Self::NewGelu => xs.gelu(), Self::Relu => xs.relu(), Self::Relu2 => xs.relu()?.sqr(), Self::Relu6 => xs.clamp(0f32, 6f32), Self::Silu => xs.silu(), Self::Sigmoid => crate::ops::sigmoid(xs), Self::HardSigmoid => crate::ops::hard_sigmoid(xs), Self::Swiglu => crate::ops::swiglu(xs), Self::Swish => xs * crate::ops::sigmoid(xs)?, Self::HardSwish => xs * crate::ops::hard_sigmoid(xs)?, &Self::Elu(alpha) => xs.elu(alpha), &Self::LeakyRelu(negative_slope) => crate::ops::leaky_relu(xs, negative_slope), Self::GeluPytorchTanh => xs.gelu(), } } } #[derive(Clone, Debug)] pub struct PReLU { weight: Tensor, is_scalar: bool, } impl PReLU { pub fn new(weight: Tensor, is_scalar: bool) -> Self { Self { weight, is_scalar } } pub fn weight(&self) -> &Tensor { &self.weight } pub fn is_scalar(&self) -> bool { self.is_scalar } } impl candle::Module for PReLU { fn forward(&self, xs: &Tensor) -> Result { let weight = if self.is_scalar { self.weight.reshape(())? } else if xs.rank() >= 2 { let num_channels = xs.dim(1)?; let num_weights = self.weight.elem_count(); if num_weights != num_channels { candle::bail!("error in prelu: unexpected number of channels for the input, got {num_channels}, weight dim is {num_weights}") } let mut s = vec![1; xs.rank()]; s[1] = self.weight.elem_count(); self.weight.reshape(s)? } else { self.weight.clone() }; let zeros = xs.zeros_like()?; xs.maximum(&zeros)? + xs.minimum(&zeros)?.broadcast_mul(&weight)? } } /// Create or initialize a new PReLU layer. /// /// This uses some default name for weights, namely `"weight"`. /// # Arguments /// /// * `num_channels` - The number of channels. Use `None` to have as single trainable value and /// `Some` for a 1D vector with the appropriate number of channels. When applying the `forward` /// function, the input tensor shape `s` should either be one dimension with this number of /// channels or if `s.len() >= 2` it should have `s[1]` equal to this number. pub fn prelu(num_channels: Option, vs: crate::VarBuilder) -> Result { let init_ws = crate::init::Init::Const(0.25); // When using a scalar weight, the PyTorch encoding is to use a 1d vector of length 1. let ws = vs.get_with_hints((num_channels.unwrap_or(1),), "weight", init_ws)?; Ok(PReLU::new(ws, num_channels.is_none())) }