//! candle-nn //! //! ## Other Crates //! //! Candle consists of a number of crates. This crate holds structs and functions //! that allow you to build and train neural nets. You may wish //! to look at the docs for the other crates which can be found here: //! //! - [candle-core](https://docs.rs/candle-core/). Core Datastructures and DataTypes. //! - [candle-nn](https://docs.rs/candle-nn/). Building blocks for Neural Nets. //! - [candle-datasets](https://docs.rs/candle-datasets/). Rust access to commonly used Datasets like MNIST. //! - [candle-examples](https://docs.rs/candle-examples/). Examples of Candle in Use. //! - [candle-onnx](https://docs.rs/candle-onnx/). Loading and using ONNX models. //! - [candle-pyo3](https://docs.rs/candle-pyo3/). Access to Candle from Python. //! - [candle-transformers](https://docs.rs/candle-transformers/). Candle implemntation of many published transformer models. //! pub mod activation; pub mod batch_norm; pub mod conv; pub mod embedding; pub mod encoding; pub mod func; pub mod group_norm; pub mod init; pub mod kv_cache; pub mod layer_norm; pub mod linear; pub mod loss; pub mod ops; pub mod optim; pub mod rnn; pub mod rotary_emb; pub mod sequential; pub mod var_builder; pub mod var_map; pub use activation::{prelu, Activation, PReLU}; pub use batch_norm::{batch_norm, BatchNorm, BatchNormConfig}; pub use conv::{ conv1d, conv1d_no_bias, conv2d, conv2d_no_bias, conv_transpose1d, conv_transpose1d_no_bias, conv_transpose2d, conv_transpose2d_no_bias, Conv1d, Conv1dConfig, Conv2d, Conv2dConfig, ConvTranspose1d, ConvTranspose1dConfig, ConvTranspose2d, ConvTranspose2dConfig, }; pub use embedding::{embedding, Embedding}; pub use func::{func, func_t, Func, FuncT}; pub use group_norm::{group_norm, GroupNorm}; pub use init::Init; pub use layer_norm::{layer_norm, rms_norm, LayerNorm, LayerNormConfig, RmsNorm}; pub use linear::{linear, linear_b, linear_no_bias, Linear}; pub use ops::Dropout; pub use optim::{AdamW, Optimizer, ParamsAdamW, SGD}; pub use rnn::{gru, lstm, GRUConfig, LSTMConfig, GRU, LSTM, RNN}; pub use sequential::{seq, Sequential}; pub use var_builder::VarBuilder; pub use var_map::VarMap; pub use candle::{Module, ModuleT};