#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use anyhow::Result; use candle::{test_utils, Device, Tensor}; use candle_nn::{LayerNorm, Module}; #[test] fn layer_norm() -> Result<()> { let device = &Device::Cpu; let w = Tensor::new(&[3f32], device)?; let b = Tensor::new(&[0.5f32], device)?; let ln = LayerNorm::new(w, b, 1e-8); let two = Tensor::new(&[[[2f32]]], device)?; let res = ln.forward(&two)?.flatten_all()?; assert_eq!(res.to_vec1::()?, [0.5f32]); let inp = Tensor::new(&[[[4f32, 0f32]]], device)?; let res = ln.forward(&inp)?; assert_eq!(res.to_vec3::()?, [[[3.5f32, -2.5]]]); let inp = Tensor::new(&[[[1f32, 2., 3.], [4., 5., 6.], [9., 8., 7.]]], device)?; let res = ln.forward(&inp)?; assert_eq!( test_utils::to_vec3_round(&res, 4)?, [[ [-3.1742, 0.5, 4.1742], [-3.1742, 0.5, 4.1742], [4.1742, 0.5, -3.1742] ]] ); let mean = (res.sum_keepdim(2)? / 3.0)?; // The average value should be `b`. assert_eq!(mean.to_vec3::()?, [[[0.5], [0.5], [0.5]]]); let std = (res.broadcast_sub(&mean)?.sqr()?.sum_keepdim(2)?.sqrt()? / 3.0)?; // The standard deviation should be sqrt(`w`). assert_eq!( test_utils::to_vec3_round(&std, 4)?, [[[1.7321], [1.7321], [1.7321]]] ); Ok(()) }