#[cfg(feature = "mkl")] extern crate intel_mkl_src; #[cfg(feature = "accelerate")] extern crate accelerate_src; use candle::{test_device, test_utils::to_vec3_round, Device, Result, Tensor}; fn softmax(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let t0 = candle_nn::ops::softmax(&tensor.log()?, 0)?; let t1 = candle_nn::ops::softmax(&tensor.log()?, 1)?; let t2 = candle_nn::ops::softmax(&tensor.log()?, 2)?; assert_eq!( to_vec3_round(&t0, 4)?, &[ // 3/5, 1/2, 4/11 [[0.6, 0.5, 0.3636], [0.1111, 0.7143, 0.5294]], // 2/5, 1/2, 7/11 [[0.4, 0.5, 0.6364], [0.8889, 0.2857, 0.4706]] ] ); assert_eq!( to_vec3_round(&t1, 4)?, &[ // 3/4, 1/6, 4/13 [[0.75, 0.1667, 0.3077], [0.25, 0.8333, 0.6923]], // 2/10, 1/3, 7/15 [[0.2, 0.3333, 0.4667], [0.8, 0.6667, 0.5333]] ] ); assert_eq!( to_vec3_round(&t2, 4)?, &[ // (3, 1, 4) / 8, (1, 5, 9) / 15 [[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]], // (2, 1, 7) / 10, (8, 2, 8) / 18 [[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]] ] ); let t2 = candle_nn::ops::softmax_last_dim(&tensor.log()?)?; assert_eq!( to_vec3_round(&t2, 4)?, &[ // (3, 1, 4) / 8, (1, 5, 9) / 15 [[0.375, 0.125, 0.5], [0.0667, 0.3333, 0.6]], // (2, 1, 7) / 10, (8, 2, 8) / 18 [[0.2, 0.1, 0.7], [0.4444, 0.1111, 0.4444]] ] ); Ok(()) } fn rms_norm(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let alpha = Tensor::new(&[1f32, 2f32, 3f32], device)?; let t = candle_nn::ops::rms_norm(&tensor, &alpha, 1e-5)?; assert_eq!( to_vec3_round(&t, 4)?, &[ [[1.019, 0.6794, 4.0762], [0.1674, 1.6744, 4.521]], [[0.4714, 0.4714, 4.9497], [1.206, 0.603, 3.6181]] ] ); let t2 = candle_nn::ops::rms_norm_slow(&tensor, &alpha, 1e-5)?; assert_eq!( to_vec3_round(&t2, 4)?, &[ [[1.019, 0.6794, 4.0762], [0.1674, 1.6744, 4.521]], [[0.4714, 0.4714, 4.9497], [1.206, 0.603, 3.6181]] ] ); let diff = (t - t2)?.abs()?.sum_all()?.to_vec0::()?; assert!(diff < 1e-5); Ok(()) } fn rms_norml(device: &Device) -> Result<()> { use rand::{rngs::StdRng, Rng, SeedableRng}; let (b_size, seq_len, head_dim) = (24, 70, 64); let el_count = b_size * seq_len * head_dim; let mut rng = StdRng::seed_from_u64(299792458); let src: Vec = (0..el_count).map(|_| rng.gen::()).collect(); let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?; let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?; let t = candle_nn::ops::rms_norm(&tensor, &alpha, 1e-5)?; let t2 = candle_nn::ops::rms_norm_slow(&tensor, &alpha, 1e-5)?; let diff = (t - t2)? .abs()? .flatten_all()? .max(0)? .reshape(())? .to_vec0::()?; assert!(diff < 1e-5); Ok(()) } fn layer_norm(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let alpha = Tensor::new(&[1f32, 2f32, 3f32], device)?; let beta = Tensor::new(&[0.5f32, 0f32, -0.2f32], device)?; let t = candle_nn::ops::layer_norm(&tensor, &alpha, &beta, 1e-5)?; assert_eq!( to_vec3_round(&t, 4)?, &[ [[0.7673, -2.6726, 3.0071], [-0.7247, 0.0, 3.4742]], [[-0.008, -1.778, 3.991], [1.2071, -2.8284, 1.9213]] ] ); let t2 = candle_nn::ops::layer_norm_slow(&tensor, &alpha, &beta, 1e-5)?; assert_eq!( to_vec3_round(&t2, 4)?, &[ [[0.7673, -2.6726, 3.0071], [-0.7247, 0.0, 3.4742]], [[-0.008, -1.778, 3.991], [1.2071, -2.8284, 1.9213]] ] ); let diff = (t - t2)?.abs()?.sum_all()?.to_vec0::()?; assert!(diff < 1e-5); Ok(()) } fn layer_norml(device: &Device) -> Result<()> { use rand::{rngs::StdRng, Rng, SeedableRng}; let (b_size, seq_len, head_dim) = (24, 70, 64); let el_count = b_size * seq_len * head_dim; let mut rng = StdRng::seed_from_u64(299792458); let src: Vec = (0..el_count).map(|_| rng.gen::()).collect(); let tensor = Tensor::new(src, device)?.reshape((b_size, seq_len, head_dim))?; let alpha = Tensor::ones(head_dim, candle::DType::F32, device)?; let beta = Tensor::zeros(head_dim, candle::DType::F32, device)?; let t = candle_nn::ops::layer_norm(&tensor, &alpha, &beta, 1e-5)?; let t2 = candle_nn::ops::layer_norm_slow(&tensor, &alpha, &beta, 1e-5)?; let diff = (t - t2)? .abs()? .flatten_all()? .max(0)? .reshape(())? .to_vec0::()?; assert!(diff < 1e-5); Ok(()) } #[test] fn softmax_numerical_stability() -> Result<()> { let dev = &Device::Cpu; let xs = Tensor::new(&[1234f32, 0.], dev)?; let softmax = candle_nn::ops::softmax(&xs, 0)?; assert_eq!(softmax.to_vec1::()?, &[1f32, 0.]); Ok(()) } fn ropei(device: &Device) -> Result<()> { use rand::{rngs::StdRng, Rng, SeedableRng}; let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let el_count = b_size * num_head * seq_len * head_dim; let mut rng = StdRng::seed_from_u64(299792458); let src: Vec = (0..el_count).map(|_| rng.gen::()).collect(); let cos: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let sin: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let sin = Tensor::from_vec(sin, (seq_len, head_dim / 2), device)?; let rope1 = candle_nn::rotary_emb::rope_i(&src, &cos, &sin)?; let rope2 = candle_nn::rotary_emb::rope_i_slow(&src, &cos, &sin)?; let sum_diff = (rope1 - rope2)?.abs()?.sum_all()?.to_vec0::()?; if device.is_cpu() { assert_eq!(sum_diff, 0.); } else { assert!(sum_diff < 1e-4); } Ok(()) } fn rope(device: &Device) -> Result<()> { use rand::{rngs::StdRng, Rng, SeedableRng}; let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let el_count = b_size * num_head * seq_len * head_dim; let mut rng = StdRng::seed_from_u64(299792458); let src: Vec = (0..el_count).map(|_| rng.gen::()).collect(); let cos: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let sin: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let sin = Tensor::from_vec(sin, (seq_len, head_dim / 2), device)?; let rope1 = candle_nn::rotary_emb::rope(&src, &cos, &sin)?; let rope2 = candle_nn::rotary_emb::rope_slow(&src, &cos, &sin)?; let sum_diff = (rope1 - rope2)?.abs()?.sum_all()?.to_vec0::()?; if device.is_cpu() { assert_eq!(sum_diff, 0.); } else { assert!(sum_diff < 1e-4); } Ok(()) } fn rope_thd(device: &Device) -> Result<()> { use rand::{rngs::StdRng, Rng, SeedableRng}; let (b_size, num_head, seq_len, head_dim) = (2, 5, 10, 16); let el_count = b_size * num_head * seq_len * head_dim; let mut rng = StdRng::seed_from_u64(299792458); let src: Vec = (0..el_count).map(|_| rng.gen::()).collect(); let cos: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let sin: Vec = (0..seq_len * head_dim / 2) .map(|_| rng.gen::()) .collect(); let src = Tensor::from_vec(src, (b_size, num_head, seq_len, head_dim), device)?; let cos = Tensor::from_vec(cos, (seq_len, head_dim / 2), device)?; let sin = Tensor::from_vec(sin, (seq_len, head_dim / 2), device)?; let rope1 = { let src = src.transpose(1, 2)?.contiguous()?; candle_nn::rotary_emb::rope_thd(&src, &cos, &sin)?.transpose(1, 2)? }; let rope2 = candle_nn::rotary_emb::rope_slow(&src, &cos, &sin)?; let sum_diff = (rope1 - rope2)?.abs()?.sum_all()?.to_vec0::()?; if device.is_cpu() { assert_eq!(sum_diff, 0.); } else { assert!(sum_diff < 1e-4); } Ok(()) } fn sigmoid(device: &Device) -> Result<()> { let data = &[[[3f32, 1., 4.], [1., 5., 9.]], [[2., 1., 7.], [8., 2., 8.]]]; let tensor = Tensor::new(data, device)?; let s1 = candle_nn::ops::sigmoid(&tensor)?; let s2 = (1. / (1. + tensor.neg()?.exp()?)?)?; let diff = (s1 - s2)?.abs()?.sum_all()?.to_vec0::()?; assert_eq!(diff, 0.); Ok(()) } test_device!(ropei, ropei_cpu, ropei_gpu, ropei_metal); test_device!(rope, rope_cpu, rope_gpu, rope_metal); test_device!(rope_thd, rope_thd_cpu, rope_thd_gpu, rope_thd_metal); test_device!(softmax, softmax_cpu, softmax_gpu, softmax_metal); test_device!(rms_norm, rms_norm_cpu, rms_norm_gpu, rms_norm_metal); test_device!(rms_norml, rms_norml_cpu, rms_norml_gpu, rms_norml_metal); test_device!(layer_norm, ln_cpu, ln_gpu, ln_metal); test_device!(layer_norml, lnl_cpu, lnl_gpu, lnl_metal); test_device!(sigmoid, sigmoid_cpu, sigmoid_gpu, sigmoid_metal);