import candle from typing import Dict, Tuple, Any from candle import Tensor, QTensor, utils, nn from candle.nn import Module, ModuleList def masked_fill(on_false: Tensor, mask: Tensor, on_true: Tensor): shape = mask.shape on_true = candle.tensor(on_true).broadcast_as(shape) return mask.where_cond(on_true, on_false) def precompute_freqs_cis(hparams: Dict[str, Any], freq_base: float, max_seq_len: int): head_dim = hparams["n_embd"] // hparams["n_head"] theta = [1.0 / freq_base ** (i / head_dim) for i in range(0, head_dim, 2)] theta = candle.tensor(theta) idx_theta = [float(i) for i in range(max_seq_len)] idx_theta = candle.tensor(idx_theta).reshape((max_seq_len, 1)) m = idx_theta.matmul(theta.unsqueeze(0)) return (m.cos(), m.sin()) class RmsNorm(Module): def __init__(self, qtensor: QTensor): super().__init__() self.weight = qtensor.dequantize() def forward(self, x: Tensor) -> Tensor: b_size, seq_len, hidden_size = x.shape norm_x = x.sqr().sum_keepdim(2) / hidden_size x_normed = x.broadcast_div((norm_x + 1e-5).sqrt()) return x_normed.broadcast_mul(self.weight) class QuantizedLayer(Module): def __init__( self, layer_idx: int, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor], cos_sin: Tuple[Tensor, Tensor], ): super().__init__() p = f"layers.{layer_idx}" self.attention_wq = all_tensors[f"{p}.attention.wq.weight"] self.attention_wk = all_tensors[f"{p}.attention.wk.weight"] self.attention_wv = all_tensors[f"{p}.attention.wv.weight"] self.attention_wo = all_tensors[f"{p}.attention.wo.weight"] self.ffw1 = all_tensors[f"{p}.feed_forward.w1.weight"] self.ffw2 = all_tensors[f"{p}.feed_forward.w2.weight"] self.ffw3 = all_tensors[f"{p}.feed_forward.w3.weight"] self.attn_norm = RmsNorm(all_tensors[f"{p}.attention_norm.weight"]) self.ffn_norm = RmsNorm(all_tensors[f"{p}.ffn_norm.weight"]) self.n_head = hparams["n_head"] self.n_kv_head = self.n_head self.head_dim = hparams["n_embd"] // self.n_head self.kv_cache = None self.cos = cos_sin[0] self.sin = cos_sin[1] self._non_persistent_buffers_set.add("cos") self._non_persistent_buffers_set.add("sin") def forward(self, x: Tensor, mask: Tensor, index_pos: int) -> Tensor: residual = x x = self.attn_norm(x) attn = self.forward_attn(x, mask, index_pos) x = attn + residual residual = x x = self.ffn_norm(x) w1 = self.ffw1.matmul_t(x) w3 = self.ffw3.matmul_t(x) mlp = self.ffw2.matmul_t(nn.silu(w1) * w3) return mlp + residual def forward_attn(self, x: Tensor, mask: Tensor, index_pos: int): b_size, seq_len, n_embd = x.shape q = self.attention_wq.matmul_t(x) k = self.attention_wk.matmul_t(x) v = self.attention_wv.matmul_t(x) q = q.reshape((b_size, seq_len, self.n_head, self.head_dim)).transpose(1, 2) k = k.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) v = v.reshape((b_size, seq_len, self.n_kv_head, self.head_dim)).transpose(1, 2) q = self.apply_rotary_emb(q, index_pos) k = self.apply_rotary_emb(k, index_pos) if self.kv_cache is not None and index_pos > 0: prev_k, prev_v = self.kv_cache k = candle.cat([prev_k, k], 2).contiguous() v = candle.cat([prev_v, v], 2).contiguous() self.kv_cache = (k, v) # TODO: maybe repeat k/v here if we start supporting MQA. att = q.matmul(k.t()) / self.head_dim**0.5 mask = mask.broadcast_as(att.shape) att = masked_fill(att, mask, float("-inf")) att = nn.softmax(att, -1) y = att.matmul(v.contiguous()) y = y.transpose(1, 2).reshape((b_size, seq_len, n_embd)) return self.attention_wo.matmul_t(y) def apply_rotary_emb(self, x: Tensor, index_pos: int): b_size, n_head, seq_len, n_embd = x.shape cos = self.cos.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) sin = self.sin.narrow(0, index_pos, seq_len).reshape((seq_len, n_embd // 2, 1)) x = x.reshape((b_size, n_head, seq_len, n_embd // 2, 2)) x0 = x.narrow(-1, 0, 1) x1 = x.narrow(-1, 1, 1) y0 = x0.broadcast_mul(cos) - x1.broadcast_mul(sin) y1 = x0.broadcast_mul(sin) + x1.broadcast_mul(cos) rope = candle.cat([y0, y1], -1) return rope.flatten_from(-2) class QuantizedLlama(Module): def __init__(self, hparams: Dict[str, Any], all_tensors: Dict[str, QTensor]): super().__init__() self.tok_embeddings = all_tensors["tok_embeddings.weight"].dequantize() self.norm = RmsNorm(all_tensors["norm.weight"]) self.output = all_tensors["output.weight"] self.layers = ModuleList() rope_freq = hparams.get("rope_freq", 10000.0) cos_sin = precompute_freqs_cis(hparams, rope_freq, hparams["context_length"]) for layer_idx in range(hparams["n_layer"]): layer = QuantizedLayer(layer_idx, hparams, all_tensors, cos_sin) self.layers.append(layer) def forward(self, token: Tensor, index_pos: int) -> Tensor: b_size, seq_len = token.shape vocab_size, hidden_size = self.tok_embeddings.shape token = token.reshape((b_size * seq_len,)) x = self.tok_embeddings.index_select(token, 0) x = x.reshape((b_size, seq_len, hidden_size)) mask = [int(j > i) for j in range(seq_len) for i in range(seq_len)] mask = candle.tensor(mask).reshape((seq_len, seq_len)) for layer in self.layers: x = layer(x, mask, index_pos) x = self.norm(x) x = x.narrow(1, -1, 1).squeeze(1) x = self.output.matmul_t(x) return x