# see https://github.com/pytorch/pytorch/blob/main/torch/nn/modules/container.py from .module import Module from typing import ( Any, Dict, Iterable, Iterator, Mapping, Optional, overload, Tuple, TypeVar, Union, ) from collections import OrderedDict, abc as container_abcs import operator from itertools import chain, islice __all__ = ["Sequential", "ModuleList", "ModuleDict"] T = TypeVar("T", bound=Module) def _addindent(s_: str, numSpaces: int): s = s_.split("\n") # don't do anything for single-line stuff if len(s) == 1: return s_ first = s.pop(0) s = [(numSpaces * " ") + line for line in s] s = "\n".join(s) s = first + "\n" + s return s class Sequential(Module): r"""A sequential container. Modules will be added to it in the order they are passed in the constructor. Alternatively, an ``OrderedDict`` of modules can be passed in. The ``forward()`` method of ``Sequential`` accepts any input and forwards it to the first module it contains. It then "chains" outputs to inputs sequentially for each subsequent module, finally returning the output of the last module. The value a ``Sequential`` provides over manually calling a sequence of modules is that it allows treating the whole container as a single module, such that performing a transformation on the ``Sequential`` applies to each of the modules it stores (which are each a registered submodule of the ``Sequential``). What's the difference between a ``Sequential`` and a :class:`candle.nn.ModuleList`? A ``ModuleList`` is exactly what it sounds like--a list for storing ``Module`` s! On the other hand, the layers in a ``Sequential`` are connected in a cascading way. """ _modules: Dict[str, Module] # type: ignore[assignment] @overload def __init__(self, *args: Module) -> None: ... @overload def __init__(self, arg: "OrderedDict[str, Module]") -> None: ... def __init__(self, *args): super().__init__() if len(args) == 1 and isinstance(args[0], OrderedDict): for key, module in args[0].items(): self.add_module(key, module) else: for idx, module in enumerate(args): self.add_module(str(idx), module) def _get_item_by_idx(self, iterator, idx) -> T: """Get the idx-th item of the iterator""" size = len(self) idx = operator.index(idx) if not -size <= idx < size: raise IndexError("index {} is out of range".format(idx)) idx %= size return next(islice(iterator, idx, None)) def __getitem__(self, idx: Union[slice, int]) -> Union["Sequential", T]: if isinstance(idx, slice): return self.__class__(OrderedDict(list(self._modules.items())[idx])) else: return self._get_item_by_idx(self._modules.values(), idx) def __setitem__(self, idx: int, module: Module) -> None: key: str = self._get_item_by_idx(self._modules.keys(), idx) return setattr(self, key, module) def __delitem__(self, idx: Union[slice, int]) -> None: if isinstance(idx, slice): for key in list(self._modules.keys())[idx]: delattr(self, key) else: key = self._get_item_by_idx(self._modules.keys(), idx) delattr(self, key) # To preserve numbering str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self) -> int: return len(self._modules) def __add__(self, other) -> "Sequential": if isinstance(other, Sequential): ret = Sequential() for layer in self: ret.append(layer) for layer in other: ret.append(layer) return ret else: raise ValueError( "add operator supports only objects " "of Sequential class, but {} is given.".format(str(type(other))) ) def pop(self, key: Union[int, slice]) -> Module: v = self[key] del self[key] return v def __iadd__(self, other) -> "Sequential": if isinstance(other, Sequential): offset = len(self) for i, module in enumerate(other): self.add_module(str(i + offset), module) return self else: raise ValueError( "add operator supports only objects " "of Sequential class, but {} is given.".format(str(type(other))) ) def __mul__(self, other: int) -> "Sequential": if not isinstance(other, int): raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") elif other <= 0: raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") else: combined = Sequential() offset = 0 for _ in range(other): for module in self: combined.add_module(str(offset), module) offset += 1 return combined def __rmul__(self, other: int) -> "Sequential": return self.__mul__(other) def __imul__(self, other: int) -> "Sequential": if not isinstance(other, int): raise TypeError(f"unsupported operand type(s) for *: {type(self)} and {type(other)}") elif other <= 0: raise ValueError(f"Non-positive multiplication factor {other} for {type(self)}") else: len_original = len(self) offset = len(self) for _ in range(other - 1): for i in range(len_original): self.add_module(str(i + offset), self._modules[str(i)]) offset += len_original return self def __dir__(self): keys = super().__dir__() keys = [key for key in keys if not key.isdigit()] return keys def __iter__(self) -> Iterator[Module]: return iter(self._modules.values()) # NB: We can't really type check this function as the type of input # may change dynamically (as is tested in # TestScript.test_sequential_intermediary_types). Cannot annotate # with Any as TorchScript expects a more precise type def forward(self, input): for module in self: input = module(input) return input def append(self, module: Module) -> "Sequential": r"""Appends a given module to the end. Args: module (nn.Module): module to append """ self.add_module(str(len(self)), module) return self def insert(self, index: int, module: Module) -> "Sequential": if not isinstance(module, Module): raise AssertionError("module should be of type: {}".format(Module)) n = len(self._modules) if not (-n <= index <= n): raise IndexError("Index out of range: {}".format(index)) if index < 0: index += n for i in range(n, index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module return self def extend(self, sequential) -> "Sequential": for layer in sequential: self.append(layer) return self class ModuleList(Module): r"""Holds submodules in a list. :class:`~candle.nn.ModuleList` can be indexed like a regular Python list, but modules it contains are properly registered, and will be visible by all :class:`~candle.nn.Module` methods. Args: modules (iterable, optional): an iterable of modules to add Example:: class MyModule(nn.Module): def __init__(self): super().__init__() self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)]) def forward(self, x): # ModuleList can act as an iterable, or be indexed using ints for i, l in enumerate(self.linears): x = self.linears[i // 2](x) + l(x) return x """ _modules: Dict[str, Module] # type: ignore[assignment] def __init__(self, modules: Optional[Iterable[Module]] = None) -> None: super().__init__() if modules is not None: self += modules def _get_abs_string_index(self, idx): """Get the absolute index for the list of modules""" idx = operator.index(idx) if not (-len(self) <= idx < len(self)): raise IndexError("index {} is out of range".format(idx)) if idx < 0: idx += len(self) return str(idx) def __getitem__(self, idx: Union[int, slice]) -> Union[Module, "ModuleList"]: if isinstance(idx, slice): return self.__class__(list(self._modules.values())[idx]) else: return self._modules[self._get_abs_string_index(idx)] def __setitem__(self, idx: int, module: Module) -> None: idx = self._get_abs_string_index(idx) return setattr(self, str(idx), module) def __delitem__(self, idx: Union[int, slice]) -> None: if isinstance(idx, slice): for k in range(len(self._modules))[idx]: delattr(self, str(k)) else: delattr(self, self._get_abs_string_index(idx)) # To preserve numbering, self._modules is being reconstructed with modules after deletion str_indices = [str(i) for i in range(len(self._modules))] self._modules = OrderedDict(list(zip(str_indices, self._modules.values()))) def __len__(self) -> int: return len(self._modules) def __iter__(self) -> Iterator[Module]: return iter(self._modules.values()) def __iadd__(self, modules: Iterable[Module]) -> "ModuleList": return self.extend(modules) def __add__(self, other: Iterable[Module]) -> "ModuleList": combined = ModuleList() for i, module in enumerate(chain(self, other)): combined.add_module(str(i), module) return combined def __repr__(self): """A custom repr for ModuleList that compresses repeated module representations""" list_of_reprs = [repr(item) for item in self] if len(list_of_reprs) == 0: return self._get_name() + "()" start_end_indices = [[0, 0]] repeated_blocks = [list_of_reprs[0]] for i, r in enumerate(list_of_reprs[1:], 1): if r == repeated_blocks[-1]: start_end_indices[-1][1] += 1 continue start_end_indices.append([i, i]) repeated_blocks.append(r) lines = [] main_str = self._get_name() + "(" for (start_id, end_id), b in zip(start_end_indices, repeated_blocks): local_repr = f"({start_id}): {b}" # default repr if start_id != end_id: n = end_id - start_id + 1 local_repr = f"({start_id}-{end_id}): {n} x {b}" local_repr = _addindent(local_repr, 2) lines.append(local_repr) main_str += "\n " + "\n ".join(lines) + "\n" main_str += ")" return main_str def __dir__(self): keys = super().__dir__() keys = [key for key in keys if not key.isdigit()] return keys def insert(self, index: int, module: Module) -> None: r"""Insert a given module before a given index in the list. Args: index (int): index to insert. module (nn.Module): module to insert """ for i in range(len(self._modules), index, -1): self._modules[str(i)] = self._modules[str(i - 1)] self._modules[str(index)] = module def append(self, module: Module) -> "ModuleList": r"""Appends a given module to the end of the list. Args: module (nn.Module): module to append """ self.add_module(str(len(self)), module) return self def pop(self, key: Union[int, slice]) -> Module: v = self[key] del self[key] return v def extend(self, modules: Iterable[Module]) -> "ModuleList": r"""Appends modules from a Python iterable to the end of the list. Args: modules (iterable): iterable of modules to append """ if not isinstance(modules, container_abcs.Iterable): raise TypeError( "ModuleList.extend should be called with an " "iterable, but got " + type(modules).__name__ ) offset = len(self) for i, module in enumerate(modules): self.add_module(str(offset + i), module) return self # remove forward altogether to fallback on Module's _forward_unimplemented class ModuleDict(Module): r"""Holds submodules in a dictionary. :class:`~candle.nn.ModuleDict` can be indexed like a regular Python dictionary, but modules it contains are properly registered, and will be visible by all :class:`~candle.nn.Module` methods. :class:`~candle.nn.ModuleDict` is an **ordered** dictionary that respects * the order of insertion, and * in :meth:`~candle.nn.ModuleDict.update`, the order of the merged ``OrderedDict``, ``dict`` (started from Python 3.6) or another :class:`~candle.nn.ModuleDict` (the argument to :meth:`~candle.nn.ModuleDict.update`). Note that :meth:`~candle.nn.ModuleDict.update` with other unordered mapping types (e.g., Python's plain ``dict`` before Python version 3.6) does not preserve the order of the merged mapping. Args: modules (iterable, optional): a mapping (dictionary) of (string: module) or an iterable of key-value pairs of type (string, module) """ _modules: Dict[str, Module] # type: ignore[assignment] def __init__(self, modules: Optional[Mapping[str, Module]] = None) -> None: super().__init__() if modules is not None: self.update(modules) def __getitem__(self, key: str) -> Module: return self._modules[key] def __setitem__(self, key: str, module: Module) -> None: self.add_module(key, module) def __delitem__(self, key: str) -> None: del self._modules[key] def __len__(self) -> int: return len(self._modules) def __iter__(self) -> Iterator[str]: return iter(self._modules) def __contains__(self, key: str) -> bool: return key in self._modules def clear(self) -> None: """Remove all items from the ModuleDict.""" self._modules.clear() def pop(self, key: str) -> Module: r"""Remove key from the ModuleDict and return its module. Args: key (str): key to pop from the ModuleDict """ v = self[key] del self[key] return v def keys(self) -> Iterable[str]: r"""Return an iterable of the ModuleDict keys.""" return self._modules.keys() def items(self) -> Iterable[Tuple[str, Module]]: r"""Return an iterable of the ModuleDict key/value pairs.""" return self._modules.items() def values(self) -> Iterable[Module]: r"""Return an iterable of the ModuleDict values.""" return self._modules.values() def update(self, modules: Mapping[str, Module]) -> None: r"""Update the :class:`~candle.nn.ModuleDict` with the key-value pairs from a mapping or an iterable, overwriting existing keys. .. note:: If :attr:`modules` is an ``OrderedDict``, a :class:`~candle.nn.ModuleDict`, or an iterable of key-value pairs, the order of new elements in it is preserved. Args: modules (iterable): a mapping (dictionary) from string to :class:`~candle.nn.Module`, or an iterable of key-value pairs of type (string, :class:`~candle.nn.Module`) """ if not isinstance(modules, container_abcs.Iterable): raise TypeError( "ModuleDict.update should be called with an " "iterable of key/value pairs, but got " + type(modules).__name__ ) if isinstance(modules, (OrderedDict, ModuleDict, container_abcs.Mapping)): for key, module in modules.items(): self[key] = module else: # modules here can be a list with two items for j, m in enumerate(modules): if not isinstance(m, container_abcs.Iterable): raise TypeError( "ModuleDict update sequence element " "#" + str(j) + " should be Iterable; is" + type(m).__name__ ) if not len(m) == 2: raise ValueError( "ModuleDict update sequence element " "#" + str(j) + " has length " + str(len(m)) + "; 2 is required" ) # modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)] # that's too cumbersome to type correctly with overloads, so we add an ignore here self[m[0]] = m[1] # type: ignore[assignment] # remove forward altogether to fallback on Module's _forward_unimplemented