# Generated content DO NOT EDIT from typing import Any, Callable, Dict, List, Optional, Tuple, Union, Sequence from os import PathLike from candle.typing import _ArrayLike, Device, Scalar, Index from candle import Tensor, DType, QTensor @staticmethod def cuda_is_available() -> bool: """ Returns true if the 'cuda' backend is available. """ pass @staticmethod def get_num_threads() -> int: """ Returns the number of threads used by the candle. """ pass @staticmethod def has_accelerate() -> bool: """ Returns true if candle was compiled with 'accelerate' support. """ pass @staticmethod def has_mkl() -> bool: """ Returns true if candle was compiled with MKL support. """ pass @staticmethod def load_ggml(path: Union[str, PathLike]) -> Tuple[Dict[str, QTensor], Dict[str, Any], List[str]]: """ Load a GGML file. Returns a tuple of three objects: a dictionary mapping tensor names to tensors, a dictionary mapping hyperparameter names to hyperparameter values, and a vocabulary. """ pass @staticmethod def load_gguf(path: Union[str, PathLike]) -> Tuple[Dict[str, QTensor], Dict[str, Any]]: """ Loads a GGUF file. Returns a tuple of two dictionaries: the first maps tensor names to tensors, and the second maps metadata keys to metadata values. """ pass @staticmethod def load_safetensors(path: Union[str, PathLike]) -> Dict[str, Tensor]: """ Loads a safetensors file. Returns a dictionary mapping tensor names to tensors. """ pass @staticmethod def save_gguf(path: Union[str, PathLike], tensors: Dict[str, QTensor], metadata: Dict[str, Any]): """ Save quanitzed tensors and metadata to a GGUF file. """ pass @staticmethod def save_safetensors(path: Union[str, PathLike], tensors: Dict[str, Tensor]) -> None: """ Saves a dictionary of tensors to a safetensors file. """ pass